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QUANTITATIVE RAY METHODS FOR SCATTERING OF SOUND BY

SPHERICAL SHELLS

Abstract

by Steven Gregory Kargl, Ph. D.
Washington State University

August 1990

Chair: Philip L. Marston

The application of ray methods to the scattering of high-frequency plane waves

from evacuated elastic spherical shells is investigated. The investigation of ray methods for

spherical shells is a precursor to the application of such methods to shells having more

complicated shapes. The scattered pressure in the farfield of the shell is

Psc = pi(aF2ryf(O)exp(ikr) where pi is the plane wave amplitude. The outer radius of the

shell is a, h = a - b is the shell's thickness, and r is the distance to an observation point.

Ray models are developed to synthesize the form functionf(O, ka) where k is the

wavenumber of the incident wave and 0 is the scattering angle. The forward scattering

amplitude,f(0 = 0), is related to the extinction cross section, ae, by the optical theorem. If

the absorption by the scatterer is negligible, then (ye is equal to the total scattering cross

section (. A ray synthesis partitions f(0 = 0) into a component for ordinary forward

diffraction about the shell,fFD, and contributions from surface guided elastic waves. For

high-frequency scattering, the relevant surface guided elastic waves are leaky Lamb waves.

A similar ray synthesis of the backscattering amplitudef(0 = n) contains a specular

reflection component, fsp(0 = it), and leaky Lamb wave contributions. A generalization of

the geometrical theory of diffraction is employed to synthesizefj(0 = 0, ka) and

fj(0 = n, ka) for the Ith leaky Lamb wave contribution. The syntheses for forward and

backwards scattering correctly describe the leaky Lamb wave contributions and are
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expressible in a Fabry-Perot resonator form. While the ray description of backsc~atering

ordinarily accurately reproduces exact computations and experiments with tone burst,

certain anomalies are discussed. A ray synthesis offsp 4emorstrates a significant

longitudinal resonance effect when kLh = nit, n = 1, 2, ..., where kL = oIcL is the

longitudinal wavenumber within the shell. The analysis of fsp is for an elastic material

with vanishing shear velocity. The relevant range of ka is 75 k<a < 100. The sell "s

surrounded by water and is composed of 440c stainless steel with i inr-to-outer radii ratio

bla =0.838.
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Chapter I

Introduction

I.I Review of the exact partial wave series for the form function

The application of acoustic ray methods to scattering problems can provide a simple

understanding of the physical interaction of an incident pressure wave and a scatterer.

When a scatterer has an arbitrary shape, direct solution of the appropriate boundary value

problem is not usually possible. While numerical solutions can be performed for a scatterer

of known composition and shape, physical insight into the underlying interaction between

an incident wave and a scatterer is often obfuscated. Ray methods may be directly applied

to describe the scattering from an object of arbitrary shape and the physical mechanisms

involved in the scattering process may easily be identified and understood. When

developing new ray techniq]ues, it is advantageous to test these techniques by comparison

to a canonical problem where an exact solution is known. The comparison of a ray model

with an exact solution should allow one to identify regions where the simple ray model is

useful. This dissertation investigates novel ray techriques, based on an elastic

generali7ttion nf the. Peometrical the.rv nf dlffractinn-1 ,2 whir.h de.Scnri, the. fnrw rd and

backwards scattering from evacuated elastic spherical shells. It is anticipated that these new

ray techniques may be easily generalized to elastic objects with smooth convex shapes.

Before developing quantitative ray techniques for the scattering of a plane wave

from a submerged evacuated elastic spherical shell, it is appropriate to review the exact

solution to this canonical problem. A plane wave in the surrounding water propagates in

the positive z-direction and is incident on an elastic spherical shell situated at the origin of a

coordinate system. The physical parameters that describe the shell are the inner-to-outcr

radii ratio b/a, the longitudinal sound speed CL, the shear sound speed ct, and the density
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P.. The parameters for water are the speed of sound c and density p. After scattering, the

total pressure in tthe water is p = Pinc + Psc where Pinc = piexp(ikz) is the incident plane

wave and Psc is the scattered pressured. The pressure amplitude of Pinc is pi and k = 21c/X

is the wavenumber of Pinc in water where X is the wavelength. The harmonic time

dependence, exp(-icot), has been suppressed and Co is the angular frequency. Using

elasticity theory, Goodman and Stem derived an exact expression for the steady-state

pressure as a partial wave series. 3 ,4 Their analysis considered an elastic spherical shell

with a fluid interior which gave arn expression similar to (see Eqs. (4a) and (6) of Ref. 3)

P = Pi in(2n + 1)[jn(kr) + BD(ka) h (1) (kr)P(cos(O)),(
n=0 

nka

wherejn and h. are spherical Bessel and EKankel functions of the first kind and P. is a

Legendre polynomial. The functions B. and Dn of the dimensionless size parameter ka are

6 x 6 determinants for a shell with a fluid interior and 5 x 5 determinants for an evacuated

shell. The elements of these determinants are contained in Refs. 3 and 5. The first term in

the square brackets of Eq. (1) is the partial wave expansion of Pinc while the second term is

Psc. In the farfield of the elastic shell, Psc has the spherically diverging form1 ,5

Psc = pi(a/2r)f(O)eiki, (2)

where the distance from the center of the shell to a distant observation point is r andfl0) is

the scattering form function or scattering amplitude. [In general,f is a function of the

spherical coordinates 0 and 0, but the azimuthal symmetry of the spherical shcll implies that

Jis independent of 0.] Inspection of Eq. (2) reveals that any structure evident in I psc I must

be a result of structure in If(0) I. An exact partial wave series representation off(0) in the

farfield can be obtained from Eq. (1) by introducing the asymptotic form
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hn "-'- i-(n+*)exp(ikr)/kr, kr >> 1. Comparing the asymptotic form of the second term in

Eq. (1) with Eq. (2) gives

f(O) = 2 I2 (2n + 1) n (ka Pn(COS(O)).ikaO n = 0 Dn(ka) (3

It is well known that a partial wave series tends to be slowly converging for large ka (see

Secs. 2.5 and 4.3 and Appendix B of Chapter 3). Also, from inspection of Eq. (3), it is

evident that the underlying physical interaction of Pin. with the scatterer is obfuscated. That

is, the complicated partial wave series representation off is not amenable to a simple

physical interpretation of the scattering process.

In 1964, Hickling calculated the form function for backscattering,f(0 = 7c), from

iron and aluminum shells. 6 The range of frequencies investigated corresponds to 0 < ka <

30 and the thickness of these shells varied from 0.05 < h/a • 0.8. These form function

calculations contain complicated structure that was attributed to the elastic response of the

shell. Using Fourier transform techniques, Hickling then constructed the backscattered

pressure for short sine.-wave tone bursts incident on the shells. [Equations (1) and (3)

describe the steady-state pressure. As discussed by Hickling, these equations may be used

to give a Fourier pzrithepd¢ nf thF. crwttF.rin tIof tone bursts.6] The computed bcs-t- -tee

echoes contained a contribution due to a specular reflection. The specular reflection is

essentially the reflection of the incident burst from the outer surface of the shell. Also,

evident in the computed backscattered pressures are echoes that are delayed in time with

respect to the specular reflection. Hickling concluded that these observed echoes were due

to a flexural type wave within the shell that propagated around the shell re-radiating energy

into the water. Later, Diercks and Hickling gave experimental confirmation of the

computed echoes for backscattcring from air- or water-filled aluminum shells. 7 Their
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experiments involved several shells of various thicknesses and tone bursts of varying

duration with a frequency corresponding to ka = 20.

Subsequently, for high-frequency scattering the waves that circumnavigate within

an elastic shell have been classified as leaky Lamb waves.5,8,9 [Franz waves (creeping

waves) may be guided by the shell's surface. Franz waves circumnavigate the shell, but

for these types of waves the strain is primarily in the surrounding water and the waves are

usuaily heavily radiation damped.] Leaky Lamb waves may be thought of as a

generalization of Lamb waves in a flat elastic plate in vacuum10 ,1I to the case of a fluid-

loaded curved plate. That is, the particle displacements for leaky Lamb waves in a fluid-

loaded shell of thickness h = a - b are analogous to the displacements associated with the

equivalent Lamb waves in a flat plate of the same thickness. Figure 1 illustrates the surface

displacements of the lowest antisynimetric and syrmnetric Lamb wavts in a plate in

vacuum. While the amplitudes have been exaggerated, the values of k1h = ka(c/cl)(l - b/a)

used for Fig. 1 are indicative of those encountered in the experiments of Ref. 5 and those

reviewed below.

1.2 Backscattering of short tone bursts from a shell

This section briefly reviews a ray model for backscattering from an elastic sphere or

shell and supporting experiments from Ref. 5. The scattering process is illustrated in Fig.

2. Ray diagrams similar to Fig. 2 are described in detail in Refs. 1, 2, and 5. The center

of a sphere or shell of outer radius a is located at the origin of a coordinate system. [The

inner radius of the shell is b and for the solid sphere b = 0.] The total scattered pressure is

a superposition of a specular reflection from the region near point C' and contributions due

to the circumnavigation of the Ith class of surface guided elastic waves around the shell.

For high-frequency scattering from elastic spheres, Rayleigh and Whispering Gallery
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(a)h

(b)I h

Fig. I Surface displacements of the ao antisymmetric (a) and so symmetric (b) Lamb wave

on a flat elastic plate of thickness h in vacuum. The dashed lines ind.Lcate the equilibrium

position for the surfaces of the flat plate.
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waves 1,2 are the relevant surface guided elastic waves ¢vhile leaky Lamb waves 5,8,9 are the

appropriate elastic waves for a shell. The incident plane wave excites a surface guided

elastic wave near point B in Fig. 2 that propagates about the shell radiating energy back into

the water. In the. vicinity of point B', the radiation is directed in the backscattered direction.

The points B and B' are determined from the phase velocity trace matching condition

sin(0l) = cfcl where 01 is the local angle of incidence and cl is the surface guided elastic

wave phase velocity. 1,2,5 The contribution to the form function due to the backscatteiing

of a surface guided elastic wave can be synthesized by considering the propagation path

length relative to an exit plane perpendicular to the z-axis through C' in Fig. 2 and it can be

expressed in a Fabry-Perot resonator form1 ,2,12

[- ell ]/[ 1 + e e (4)

where il is a propagation phase delay. A complex coupling coefficient GI describes the

efficiency of the coupling between the acoustic wavefield in water and the surface guided

elastic wave and P3t is the radiation damping parameter (in Np/rad) for the surface guided

elastic wave. A virtually exact expression for GI is available for elastic spheres, but its

dependen P, on the physicAl.y relevant pnnrmeters cyc and R! is non-trivial. 2 Marston has

developed an approximation for Gl that appears to give excellent results for elastic spheres

as well as shells (see Appendix I). 1,13

In backscattering and near backscattering experiments described in Ref. 5, a 3 or 4

cycle sine-wave tone burst was incident on a sphere or shell with frequency co/27t. Figure

3a contains hydrophone output voltage versus time records for the backscattering of a burst

from a solid tungsten carbide sphere; while Figs. 3b - d are for the backscattering from a

hollow 440c stainless steel shell. The radius of the tungsten carbide sphere is awc = 12.7

mm and the outer radius of the 440c stainless steel shell is ass = 19.05 mm while the shell's
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A AN

A'

B

Fig. 2 Ray diagram of a surface guided elastic wave contribution to backscattering from a

sphere (b = 0) or shell of inner-to-outer radii ratio b/a. The incident plane wave launches a

surface guided elastic wave on shell at B. The surface wave repeatedly circumnavigates the

sphere or shell continually shedding energy back into the water. At B', the radiated energy

is directed in the backscattered direction and appears to originate from a vi~tual .ring-like

source generated by rotating the point F1 about the CC' axis. The ring-like source

describes a toroidal wave front associated with the axial focusing or glory scatte-dng of the

surface wave. There are also contributions to backscattering associated withi the specular --

reflection and repeated internal reflections in Lhe vicinity of C'.

D-__-
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huR R R R

S S0 so

S so 110

(d)

40 psec

COAXIAL
CABLE I

SNEDLE

PISTON Md AX- L C,
/a

BFL//SCAN 0AXIS SPHERE

Fig. 3 (Upper) Measured echoes for tDackscattering a 3 or 4-cyle sine-wave tone burst

from a solid tungsten carbide sphere (a) and an evacuated spherical shell composed of 440c

stainless steel (b - d). The specular reflection is labeled S. Rayleigh wave and lowest

antisymmetric and symmetric leaky Lamb waves echoes are denoted by R, ao, and so,

respectively. The tail immediately following the specular reflection in (b) and (c) is

partially due to a longitudinal resonance. (Lower) Schematic of the experimenta! apparatus

employed for backscattering and near backscattering experiments.
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thickness is h = a..- b = 3.09 mm. The size parameter, ka = (al/c, for each trace is as

follows: (a) 43.2, (b) 64.7, (c) 68.8, and (d) 36.4. In Fig. 3, the specular reflection from

thc sphere or shell is labeled S. The Rayleigh wave contributions radiated from the

tungsten carbide sphere are labeled by I = R while the lowest antisymmetric and symmetric

leaky Lamb wave contributions radiated from the shell are designated I = ao and so,

respectively. The identification of a specific surface guided elastic wave with an, echo in

Fig. 3 is in accordance with their arrival time relative to the specular reflection. Detailed

analyses of backscattering records from a tungsten carbide sphere similar to Fig. 3a are

given in Refs. 12 and 14. Although, Figs. 3a and 3d are similar to the scattered pressure

computed by Hickling for an incident tone burst,6,15 the records in Figs. 3b and 3c contain

a feature not evident in Hickling's computations for shells. Inspection of Figs. 3b and 3c

shows a long decaying pulse train immediately following the spe'ular reflection. This

decaying echo appears to be partially associated with the "ringing down" of a bulk,

longitudinal resonance that is investigated in detail in ChapLer 4.

Distinct echo contributions are enumerated m = 0, 1, ..., by considering the number

of complete circumnavigations associated with each echo. The backscattered pressure

amplitude for the uth distinct contribution from the Ilth class of surface guided elastic wave

has the predicted form

IPm/I = ipIA,,a/2r, Am = IG I le - -0- 22iii 10(u) - ij/I,/J,(u)I, (5a,b)

where the functions Jo(u) and Jj (u), u = kayc!':i, are cylindrical Bessel functions and 7 is

the local backscattering angle, 7 = nt -- 0. The normalization in Eq. (5a) is such that the

specular reflection from a large immovable rigid sphere is a wave whose amplitude is

I pi I(a/2r). For exact backscattering y = 0 and I Jo(u) - iSlaJl (u) I = 1. Figure 4 contains

the normalized on-axis amplitudes of the m = 0 echo for the I = ao (solid line) and so
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Fig. 4 Theoretical normalized backscattering amplitudes for ao (solid line) and so (dashed

line) leaky Lamb wave echoes are compared with experimental data. The normalization is

with respect to a tungsten carbide sphere. The on-axis hydrophone distances for each data

set from the point C' in Fig. 2 is indicated. The data points were obtained from voltage

measurements on traces similar to those in Fig. 3.



(dashed line) leaky Lamb waves. Since absolute pressure amplitude measurements could

not be achieved over the entire range of frequencies, both the theoretical and experimental

amplitudes of the backscattering from the 440c stainless steel shell were normalized by the

specular reflection from the tungsten carbide sphere. The normalized measured A01 are

given by (Voi/Vswc)(awcl fswc I/ass) where V0 l and Vswc are the measured peak-to-peak

voltages of the (1 =a o, so) leaky Lamb wave echo and specular reflection from tungsten

carbide, respectively. The magnitude of the specular reflection form function for the

tungsten carbide sphere is I fswc I and the ratio of radii appears because of the difference in

the size of the sphere and shell used. [For the frequency range of interest Ifswc I = (PeCL-

pc)I(PeCL + pc) = 0.969.] The agreement for ka < 44 between Eq. (5b) and experiment is

good, but for the ka > 44 the measured values deviate substantially from the predicted

amplitudes. One plausible cause for this discrepancy is the possible excitation of the I = al

and sl leaky Lamb waves for ka > 41 and 65, respectively. These waves were neglected in

the original analysis in Ref. 5. A second probable cause of the disagreement between the

measured and predicted values is that the ao and so echoes overlap in time for 50 < ka < 70

and the long decaying pulse train for ka > 65 may also interfere with the ao echo.

Equation (5b) indicates that Aml should have a maximum for y = 0 and it decreases

when the observation point is moved away from the axis (so that y * 0). The localization

of the pressure amplitude near the backward axis is a manifestation o" tkhe acoustical

glory. 5,14 The m = 0 amplitude for the I•= ao leaky Lamb wave was studied to verify this

prediction. Again, the theory and measurements were normalized by the on-axis specular

reflection from a tungsten carbide sphere. From Eqs. (2) and (5a), the normalized pressure

is

IPa Am"

Ipswc(r0)I awcIfswc I I + tan2 1/2 (6)
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Fig. 5 Experimental confirmation of the axial focusing predicted by Eq. (6). The m = 0

amplitude of the ao leaky Lamb wave echo was measured as the hydrophone was shifted

away from backscattering (y = 0). For the 440c stainless steel shell studied, the frequency

of the incident 4-cycle sine-wave tone burst corresponds to ka = 24.3
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The on-axis distance of the hydrophone from point C' in Fig. 2 is z and ro = z + a. Figure

5 compares the theoretical prediction from Eq. (6) with experimental data for ka = 24.3.

Inspection of Eqs. (5b) and (6) reveals that I pml(rO,y)/lpswc(rO) depends only on 'y (note

ro/r = [I + tan2y']- 1/2) and that it contains no adjustable parameters. The agreement

between theory and experiment is excellent for a measurement of this type. A detailed

discussion of the theory and experimental methods used in obtaining Figs. 4 and 5 is

contained in Ref. 5 as well as other theoretical and experimental results. The importance of

these results is that a qualitative ray model of the backscattered pressure described the

experimental observations.

The remainder of this dissertation gives a more detailed analysis of the forward and

backwards scattering of a plane wave from an evacuated spherical shell. Chapter 2

develops quantitative ray methods used in synthesizing the forward scattering amplitude

and, ultimately, the total scattering cross section via the optical theorem. Chapters 3 and 4

investigate quantitative ray methods for the modeling of the form function for

backscattering. The contents of chapters 2 and 3 have been accepted for publication in the

Journal of the Acoustical Society of America. The present form of chapter 4 has been

•IUUE A VLL•b •A F".U•L&V",LL•AWL "IJL LEIL% J *JJ L I Lie,. ACVIOU .LI.,KLi kllt l* .L ,[LýL•,L.fL elJl L•I ,L

chapters are independent papers, they may be read separately. As such, each chapter

contains its own abstract, introduction, sections, appendices, and references. The

numbering of equations, figures, and tables are unique to a given chapter. Mathematical

symbols may differ slightly between chapters, however, each symbol is clearly defmied

within the appropriate chapter. It is suggested that chapter 3 be read prior to chapter 4,

since some results from chapter 3 are used in chapter 4. Two appendices follow the main

text. Each appendix contains material germane to the ray synthesis of the forward and

backwards scattering from an evacuated elastic spherical shell. This material could not be
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adequately presented within chapters 2 - 4, but it is deemed important for completeness of

the analysis. Appendix I discusses Marston's approximation for the complex coupling

coefficient and comparison to an apparent exact complex coupling coefficient for each leaky

Lamb wave is presented. The dependence of the leaky Lamb wave resonance spacing on

the phase and group velocities is also discussed in Appendix I. Finally, Appendix IH

contains tables of the leaky Lamb wave parameters necessary for the ray synthesis. These

parameters were generated by extending certain results of the Sommerfeld-Watson

transformation of the partial wave series for backscattering from a solid elastic sphere to the

shell.
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Chapter 2

Ray synthes~s of Lamb wave contributions to the total scattering cross

section for an elastic spherical shell

Abstract

The optical theorem relates the extinction cross section, ae(ka), to the forward

scattering amplitude, f(O = 0, ka). Here 0 denotes the scattering angle, k is the

wavenumber of the incident sound, and a is the radius of the scatterer. If the absorption by

the scatterer is negligible so that the scatterer is elastic, Ye is equal to the total scattering

cross sectiz:n at. By applying this theorem to the partial wave series forf(0,ka), we can

obtain an expression for a, for an elastic spherical shell in water. However, the series

representation of a, does not facilitate a direct understanding of the rich structure caused by

the shell's elastic response. In particular, the elastic response is attributable to leaky Lamb

waves. We employ a generalization of the geometrical theory of diffraction [P. L.

Marston, J. P-.cou.t. Soc. Am. 83, 25-37 (1988)] to synthesizef(0, ka). This simple ray

acoustic synthesis contains a component for ordinary diffraction by the shell and distinct

contributions for thc individual Lamb waves that can be excited on the shell. A comparison

of numerical computations for at utilizing the exact partial wave series and the ray

synthesis shows good agreement in the description of the resonance structure. The relevant

range of ka for this comparison is 7 < ka < 100. The elastic material of the shell is 440c

stainless steel and the inner-to-outer radius ratio is b/a = 0.838. Dispersion curves and

radiation damping for Lamb waves were calculated by Watson transform methods. The

structure in ul(ka) due to Lamb waves may also be depicted as a manifestation of forward

glory scattering and experimental evidence for the forward glory is noted.



18

2.1 Introduction

Several articles have concentrated on the surface elastic wave contributions to

backscattering from solid elastic spheres 1, 2, 3 and cylinders4 as well as spherical 5 , 6, 7 and

circular cylindrical shells. 8, 9 The surface elastic waves on solid spheres and cylinders are

leaky Rayleigh and whispering gallery waves; while the surface elastic waves on spherical

and cylindrical shells are a generalization of Lamb waves. (Although the strains due to

Lamb waves are not strictly confined to the surface of the shell, it may be appropriate to

label Lamb waves as surface elastic waves, since the surface of the shell guides the Lamb

wave propagation.) In particular, some of these authors have considered the significance

of surface elastic wave resonances to the backscattering form function, f(0 = 7c) defined in

Eq. (1) below. Since the structure found in the backscattering form function is attributed to

the presence of surface elastic wave resonances, then these resonances should also

contribute to the scattering in the forward direction. In this article, we are concerned with

the manifestation of such contributions to the total scattering cross section for an elastic

spherical shell.

When a scatterer is placed in an incident acoustic plane wave of intensity I(WIM2),

section.10 The extinction cross section, denoted as (3e, expresses the total power removed

(scattered or absorbed) from the incident plane wave as Ige. From the conservation of

energy ae = a, + cyabs where Iyabs is the power absorbed by the scatterer and 3jabs is known

as the absorption cross section. The extinction cross section is related to the forward

scattering amplitude by the optical theorem reviewed in Sec. 2.2 below. 11,12 (This

theorem has also been referred to as the extinction theorem.) Some early examples of the

application of the optical theorem to acoustical problems are given in Refs. 13 - 15. For a

scatterer with no absorption, 'gabs = 0, so that 0 e = cy and the optical theorem may be used
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to calculate at directly. (Even for nonabsorbing scatterers, however, some authors 16-18

resorted to integration of differential cross section over 4ic sr to obtain at.) The scatterer

considered in the present paper is modeled as perfectly elastic.

In this paper, the forward scattering amplitude is obtained from the exact partial

wave series and from a synthesis in terms of ray contributions. The synthesis is partially

facilitated by the elastic generalization of the geometrical theory of diffraction given in Ref.

9.

This paper is organized as follows. In Sec. 2.2, the optical theorem is stated for the

case of scattering from spheres. Using the optical theorem and partial wave series

representation for the forward scattering amplitude, at for an elastic spherical shell is

obtained. The basis of the ray synthesis of at is outlined at the end of Sec. 2.2. In Sec.

2.3, the component of at due to ordinary forward diffraction is developed for the ray

model. Individual Lamb wave contributions to the ray representation of the forward

scattering amplitude are determined in Sec. 2.4. Section 2.5 compares the results of the

exact partial-wave series calculation with the ray model. The pertinent conclusions from

the comparison in Sec. 2.5 are contained in Sec. 2.6 along with a discussion of relevant

aspects of forward glory scattering for spheres. Section 2.6 also summanrizes an

experimental observation pertinent to the forward glory of shells and comments on the

cause of certain frequency dependent structure in at. Appendix A discusses the Lamb

wave parameters used in the synthesis as given by Watson transform methodology.1 ,3,5,9

2.2 The optical theorem for acoustic scattering

A. Partial wave series analysis

A unit amplitude plane wave, propagating in the positive z-direction, in water is

incident upon an elastic spherical shell. The total pressure in the water can be expressed as
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a superposition of the incident plane wave and a scattered wave. In particular, in the

farfield of tle, shell, the total pressure is 1, 5

Pt = e + (a/2r)f(0)eiIr" (1)

The first term is the incident plane wave with wavenumber k = o3/c. The second term is a

spherically diverging scattered wave. The outer radius of the shell is denoted by a andf(0)

is the complex dimensionless scattering amplitude. The harmonic time dependence, exp(-

icot), has been and, henceforth, will be suppressed.

The optical theorem provides a fundamental relationship between the scattering

amplitude and ae. Several authors give various expressions for the optical theorem (see,

e.g., Refs. 11, 12, 19, and 20). For the amplitude normalization used in Eq. (1), it

follows that

Ye = (21a/k) Im{f(e = 0)), (2)

where ImNO means the imaginary part of the enclosed quantity. The significance of Eq. (2)

is that the only scattering amplitude needed is the one for forward scattering. It is

convenient to normalize ae by the geometrical cross section of the shell, -a 2,

(,e/ta2) = (2/x) Imr{f(0 = 0)). (3)

This normalization introduces the dimensionless size parameter, x = ka, into Eq. (3). In

the discussion which follows we consider perfectly elastic scatters so that at = •y-

The partial wave series (PWS) representation of the exact forward scattering

ampliti le for an evacuated elastic spherical shell is

oo Bn(x)
f(0 = 0) = (2/ix) I (2n + 1) , (4)

n 0 Dn(x)



21

where n is the partial wave index. The functions Bn and Dn are 5 x 5 determinants whose

elements are complicated combinations of spherical Bessel functions of the first and second

kind.5 Using Eqs. (3) and (4), the normalized total scattering cross section for the shell

becomes

0 IBn(x)
(cY/ta 2) = (-4/x2) L (2n + 1) Re{D-(x) }, (5)

n=0

where Re{ } denotes the real part of the enclosed quantity. The dashed curve in Fig. 1, that

contains the complicated structure, is the normalized at for a 440c stainless steel shell as

computed from Eq. (5) with the material parameters given in Sec. 2.5. There are two

important features in Fig. 1. First, at is approaching the expected value of twice the

geometrical cross section of the shell as x -- -,. This asymptotic result for at is known as

the extinction paradox. Physical interpretations of the extinction paradox have been

discussed by various authors.20-22 Second, and perhaps more important, the structure

observed in at for a 440c stainless steel shell is a manifestation of the elastic nature of the

scatterer. That is, a comparison of a, for b-i elastic shell and a rigid sphere of radius a in

Fig. 1 shows that the elastic properties of the shell are important.

The expression for the normalized cross section in Eq. (5) has properties which

would make a geometrical representation worthy of investigation. First, a simple physical

interpretation of the structure in at is not easily obtained directly from the PWS

representation. Although, it is known that the incident plane wave can excite Lamb wave

resonances in a shell, the quantitative description for this coupling is not immediately

apparent from the PWS expression. Second, it is well-known, that for large ka, the PWS

is a slowly converging series; the number of terms required exceeds ka. See Eq. (16)

below. We examine below a simple expression for at based on a generalization 9 of the

geometrical theory of diffraction 23. It should be possible to modify this ray representation
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Fig. 1 Normalized total scattering cross sections for empty elastic spherical shell in water

and a rigid sphere, each of outer radius a. The short dashed line is the exact partial wave

series result for the shell, Eq. (5), with the stainless steel parameters listed in Sec. 2.5 and

an inner to outer radius b/a = 0.838. The solid, monotonic curve corresponds to the rigid

sphere, where the partial wave series, Eq. (9), is calculated. The long dashed line is the

first three terms of Beckmann and Franz's approximation, Eq. (10), for the normalized

cross section for the rigid sphere
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of the total scattering cross section for objects of other shapes where the cross section is

not easily obtained from a PWS.

B. Ray synthesis of the total scattering total scattering cross section

It has been proposed, that the form function describing the steady-state high-

frequency backscattering amplitude from spheres can be approximated by three ordinarily

distinct classes of contributions.1,3,9 These contributions are: a specular reflection,

transmitted bulk wave contributions, and surface elastic wave contributions. A

superposition of these components givef, the scattered pressure term of the total pressure in

the backward direction. (If ka is smaller than about 15, a contribution to backscattering

from Franz-type creeping waves can also become significant for some materials or shell

thicknesses but such contributions were not separately analyzed.) By superposing the

appropriate contributions, the forward scattering amplitude may be synthesized as

discussed below.

To construct the geometrical synthesis of the forward scattering amplitude for the

spherical shell, the specular reflection term for backscattering is replaced by a contribution

that describes the ordinary forward diffraction about the shell (see Sec. 2.3 below). The

transmitted bulk wave contributions, that backscattering form functions may contain, do

not occur in the forward scattering amplitude of a thin elastic air-filled or evacuated shell.

That is, there is no mechanism for the transmission of a bulk wave through the interior of

the shell. Since surface elastic waves leak energy continuously back into the surrounding

water, then these contributions must also be included in the forward scattering amplitude.

Hence, the forward scattering amplitude has the approximate form

f(0 = 0) = fFD + ft (6)
l
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where the summation is over all possible surface elastic wave contributions. Since the

operator, Ina{ }, is linear, then by inspection of Eqs. (2) and (6) the total scattering cross

section is

Ut =• UFT + Yd CY1 "(7)

The forms of the individual components in Eqs. (6) and (7) are considered in Secs. 2.3 and

2.4.

2.3 Forward diffraction term for the total scattering cross section

The specific form of the contribution to at due to ordinary forward diffraction about

an elastic spherical shell is not currently available from a Watson transformation. 1 The

simplest approximation would be the total scattering cross section of a rigid disk of radius

a. That is, the total scattering cross section for a rigid disk (computed from the optical

theorem) can only be attributed to ordinary forward diffraction. The asymptotic value (i.e.,

ka >> 1) for the normalized total scattering cross section of the rigid disk24 is 2. As noted

previously, (ar / nta 2) -- 2 as ka -- o* is known as the extinction paradox. Although

forward diffraction from a rigid disk gives the expected asymptotic value, this

approximation is inappropriate for the ka range of interest, 7 < ka < 100.

A more suitable approximation for the normalized ordinary forward diffraction

contribution (F/J 7a2) is the total scattering cross section for a fixed rigid or acoustically

hard sphere. To obtain (aFJ/ 7a2), we employ the optical theorem, as given by Eq. (3),

and the forward scattering amplitude for the rigid sphere. The forward scattering amplitude

for the rigid sphere is given by the PWS7, 25

fFD = (-2/ix) (2n +l) 1 n (8)

n=O h 0(x)
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where j, and hn are spherical Bessel functions of the first and third kind, respectively. The

prime in Eq. (8) denotes differentiation with respect to the argument of the function. The

result of inserting Eq. (8) into Eq. (3) is

(aFD/na2) = (4/x2) 1 (2n + 1) Re h (),- W (9)

The solid, monotonically increasing curve in Fig. 1 is o-FD/2ta2 for a rigid sphere of radius

a. From Fig. 1 one observes that the cross section for the rigid sphere asymptotically

approaches 2. Although Eq. (9) is a suitable candidate for (cFD/ 7ra2), its dependence on x

is complicated and, hence, not a simple parameterization of the ordinary forward

diffraction contribution to (yt of an elastic sphere.

Beckmann and Franz performed a modified Watson transformation on a rigid

sphere result similar to Eq. (9).26, 27 The Watson transformation transforms the slowly

convex ging PWS into a more rapidly converging series. The result of their calculation is a

series in inverse powers of x,

(caFD/ra 2) = 2 - 1.7284 x"'/3 - 2.0104 x-4/3 + O(x' 2). (10)

The first three terms in Eq. (10) are plotted as the long-dashed line in Fig. 1. From

inspection of Fig. I, we observe that the Beckmann and Franz result is, perhaps, the

simplest approximation of the ordinary forward diffraction term in Eq. (7) throughout the

region of interest 7 < x < 100. Thus, for the numerical computations given in Sec. 2.5, we

use the first three terms in Eq. (10) for the contribution of ordinary forward diffraction to

tot.

It may be argued that the second term in Eq. (10) represents approximately the x

dependence of contributions of grazing rays (also known as edge rays) to In,#f(0 = 0)] for

a rigid sphere. In addition, there could be distinct ray contributions which wrap completely
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around a rigid sphere. The waves associated with those rays are creeping waves having

phase velocities close to the speed in the outer media (water). The damping of such waves

is sufficiently large that contributions from a complete circumnavigation to forward

scattering are generally thought to be negligible for impenetrable spheres. 15,28

2.4 Leaky surface wave contributionG to the forward scattering amplitude

In this section, we use the methodology of geometrical theory of diffraction

generalized to elastic objects9 to derive an expression for an individual surface elastic wave

contribution,fl, to the forward scattering amplitude. The acoustic ray diagram in Fig. 2

facilitates an understanding of this ray synthesis offi. The ray diagram is similar to those

discussed in Refs. 1, 5 and 9. An acoustic plane wave propagates along the ray AB in the

posidve z-direction, At the point B the acoustic wavefield in water couples to the elastic

shell and launches a surface elastic wave. The surface elastic wave propagates from B to

B' shedding energy continuously back into the water. At B' the radiated energy is directed

along the forward scattering direction (parallel to the +z--axis). The surface elastic wave

repeatedly circumnavigates the shell radiating energy each time in the forward direction.

The points B and B'are determined by the phase velocity trace-matching condition,

01 = arcsin(c/c1), cI Ž-- c,

where 01 is the local angle of incidznce and c/cl is the ratio of the speed of sound in water,

c, and the phase velocity along the shell's outer surface ot the Lamb wave, cl. The phase

velocity is assumed to be supersonic.

The furm of the individual surface elastic wave contribation to the forward

scattering amplitude is
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Fig. 2 Acoustic ray diagram for Lamb wave contributions to the forward scattering

amplitude for Lamb waves having cl > c. The outer radius of the shell is a and the inner

radius is b. The incident acoustic plane wave launches a Lamb wave in the vicinity of point

B. The Lamb wave propagates along the shell and radiates in the forward direction at point

B'. The points B and B' are determined by Eq. (11). The qualitative features of the ray

diagram are made quantitative through Eqs. (12) - (14) to describe the scattering. The ray

synthesis also contains a contribution due to diffraction about the shell. That includes

contributions due to rays which touch the shell near E at the edge.
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f -(ee - 20) • e)R~ e 2mnp, i2mnxc/c,
fI=-Gl ei'1 m e e (12)

m=0

The coupling efficiency of the acoustic wavefield in water with the elastic shell at the points

B and B' in Fig. 2 is characterized by a complex coupling coefficient G1. The geometrical

phase shift,

x(c/cd)(t - 20/) - 2x cos(01) (13)

accounts for the difference in phase of a surface elastic wave traveling from B to B' along

the shell and a plane wave in water traveling from B to B' as if the shell were not present.

The factor exp[- (7t - 201 )PI] is associated with the radiation damping of the surface elastic

wave propagating along the arc BB'. The radiation damping parameter is denoted by Pl

and has the units of np/radian. The summation occurs in Eq. (12) from the

circumnavigations of the surface elastic wave. The m = 0 term is the first partial

circumnavigation of the shell; while m = 1, 2.... is for each successive complete

circumnavigation. The terms exp(-2mitPl) and exp(i2mitxc/cj) are the additional radiation

damping and phase shift. Finally, the term exp(imit) arises from the passage of the surface

elastic wave through the caustics at the points C' and C".

It is observed that the summation in Eq. (12) is a geometric series and may be

expressed in a simple analytic form.3 Summing the series in Eq. (12), we have

fl = [- G1 ein e (n- 20 ]/[ + e e ]. (14)

The form of the denominator infl is that of a Fabry-Perot resonator.3 ,9 Equation (14) is

the desired ray synthesis forft.

The coupling coefficient, Gl, for the elastic solid sphere was determined from the

Sommerfeld-Watson transformation on the appropriate PWS. 1, 9 At the time of this

writing, an expression for the coupling coefficient for the elastic spherical shell is not
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available directly from the Watson transformation. However, Marston has derived

approximations for G1 for an elastic sphere and cylinder.9,29 The approximations were

supported by various numerical results for solid spheres and cylindrical shells.9 The

relevant result for spheres may be written

Gl = 8t71 (c/cI) eiot (15)

where 01 denotes the phase of G1 and it may be argued29 that 01 = 0. For the calculation in

Sec. 2.5, 01 for the lth surface elastic wave is taken to be identically equal to zero. It is

noteworthy that the magnitude of G1 depends on only the damping parameter and the ratio

of the velocities. This result for I GI I was confirmed in Ref. 5 for the stainless steel shell

considered here by use of measured backscattering amplitudes. The computations

discussed in Sec. 2.5 give additional support for Eq. (15) with 01 = 0 as does a synthesis

of the steady state backscattering amplitude for the shell considered.30

The ray synthesis of the contribution of a particular surface elastic wave is given by

Eqs. (11), (13) and (14) with the approximation, Eq. (15), used for the coupling

coefficient. Inspection of Eqs. (11) - (15) shows that a particular surface elastic wave

contribution depends on only the damping parameter and th..; phase velocity ratio. The

method used for determining 031 and c/Cl is described in Appendix A.

2.5 Numerical results and discussion

The calculations shown1 in Figs. 3 - 8 are for a 440c stainless steel shell immersed

in water. For these computations, the material parameters for 440c stainless steel were

selected because of previous work with a shell composed of this material. 5 The

longitudinal velocity, cL, for 440c stainless steel is 5.854 mm/pls and the shear wave

velocity, cs, is 3.150 mm/ps. The density is Ps = 7.84 g/cm3. The shell's outer radius is
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a = 19.05 mm and the ratio of the inner-to-outer radius is b/a = 0.838. The speed of sound

for the water is c = 1.479 mm/ps; while the density is p = 1.00 g/cm3.

For the PWS computations, we use Eq. (5), where the determinants B. and D. are

given in Ref. 5. The PWS calculation for (at /na2) is performed over the range 0 < x <

100. In Figs. 3 - 8, the dashed curves are the exact PWS results. When summing PWS,

the following maximum values for the partial wave index were tested and found to ensure

convergence:

nma = 2+ [ x + 4.0x 1/3], x<8, (16)

nmax = 3 + [ x + 4.05 x ], x 8,

where the square brackets imply the integer part (i.e., roanded up or down) is to be used.

These values are similar to ones used when evaluating the Mie PWS for light scattering.3 1

That the maximum partial wave index in the optical and acoustical cases should be similar

may be argued from the localization principle. 12 (The proper convergence of the PWS for

the shell considered was verified by substantially increasing nmax. Equation (16) should be

used with caution, however, for thin shells having significant subsonic wave

contributions.) Since a Lamb wave resonance can contain sharp peaks, the increment of x

needs to be small. Hence, it is apparent that the implementation of Eq. (5) can be relatively

computationally intensive.

The particular Lamb waves, that can be coupled to a shell with the above material

properties and in the range 7 < x < 100, are the two lowest antisymmetric or flexural modes

a0 and al and the two lowest symmetric or dilatational modes so and s1. The present ray

synthesis is restricted to x > 7 for two reason. First, the numerical procedure used to

obtain Lamb wave damping parameters and phase velocities begins to breakdown as noted

in Appendix A. That is, the numerical accuracy of the results become suspect. Second, the
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a0 mode becomes subsonic for x < 7. The present ray synthesis is limited to supersonic

surface elastic waves as evident from Eq. (11) and the related analysis given in Refs. 1 and

3.

The solid curves in Figs. 3 - 8 are the ray synthesis, where (arFD/za 2) is given by

the first three terms in Eq.(10) (a monotonic function of x) and the appropriate Lamb wave

contributions are included. In Fig. 3, the ray result has only two terms. These terms are

the ordinary forward diffraction component and the lowest antisymmetric Lamb mode

contribution, cao. It is apparent that the course structure, for 7 < x < 25, is attributed

entirely to the ao fle-ural Lamb wave. The sharp resonances in Fig. 3, that are not

modeled, are from the as0 contribution. Figure 4 includes qs0. The agreement of the ray

synthesis and the exact PWS for (Ct, /ta 2) is good considering the ray model is based on

high-frequency methoxds. Observe that the above synthesis appears to be accurate down to

x - 9. It is noteworthy, however, that the so resonances near ka of 17.60, 21.28, and

24.95 may not have been fully resolved due to the narrowness of their line widths.

The region 25 < x < 50 is plotted in Figs. 5 and 6. The vertical axis has been

magnify to enhance the visibility of narrow resonance features and to better illustrate the

agreement between the ray and PWS results. In Fig. 5, the ray i__del contains the ordinary

forward diffraction term and the a0 and so Lamb wave contributions. Again, the broad

structure is associated with the a0 Lamb wave while the sharp resonances are attributable to

the so Lamb wave. However, as noted in Appendix A, the a1 antisymmetric mode can be

excited on the shell for x > 40. In particular, the resonance features at x = 43, 44, 46 and

50 are not associated with either the a0 or so modes. By adding the a1 contribution in this

region, we recover all the resonance features of the PWS result in the ray synthesis of the

cross section.
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Fig. 3 A comparison of the exact partial wave series representation of the normalized total

scattering cross section with the ray synthesis. The dashed curve is the partial wave series

result, Eq. (5), and the solid line is the ray model. Only the oFT and 0 aa contributions are

include in the ray model.



33

a
'I II 'I
Il i \ oilo',

I 4t'te CU2

I

I
I

[,~i ka
C,

Fig. 4 A comparison of the same ka range as in Fig. 3, but the aS0 contribution has now

been included in the ray synthesis. The broad and narrow structures appear to be correctly

synthesized. The resolution of each plot was enhanced relative to the plots in Figs. 2 and 3

so as to more accurately describe the narrow so lamb wave resonances.
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Fig. 5 The dashed curve is the partial wave series result for the normalized total

scattering cross section. The ray synthesis (solid curve) contains the contributions aFD,

ao and aso. The broad structure is associated with the a0 Lamb wave; while the narrow

peaks and dips are from the so Lamb wave. This level of synthesis fails to reproduce

features at ka = 43, 44, 46, 48, and 50.
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Fig. 6 Like Fig. 5 except the ray synthesis is improved by including ca 1 in the region ka

> 40.
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The ray synthesis for 50 < x < 75 is shown in Fig. 7. The exact PWS computation

is the short dashed line. The solid line is a ray synthesis of the normalized at; where the

relevant contributions are: (FD/7ca 2), ao, so, and al. A comparison of the ray and PWO

results demonstrates that these contributions are sufficient to describe both the broad and

narrow resonances. In particular, the features in the normalized at for x < 71 are entirely

due to the ao, so, and al Lamb waves. For x > 71, the acoustic wavefield in water can

couple into the sl Lamb wave. The significance of the sl Lamb wave to the ray synthesis

is observed from the long dashed line in Fig. 7. By adding the sI Lamb wave, the ray

model is found to give a better approximation of the PWS calculation for 50 < x < 75.

The last figure, Fig. 8, corresponds to the range 75 < x < 100. The ray model

contains the (aFD/na2 ), a0, so, al, and Sl contributions. An examination of the individual

components in the synthesis allows one to identify the particular surface wave responsible

for a specific structure. It is important to notice the synthesis is essentially the same as the

PWS computation except for a small offset. That is, the ray synthesis accurately

reproduces the resonance features in this region... Finally, the ray synthesis appears to be

approaching the extinction-paradox value of 2.

The offset of the ray result from the PW-S computation, evident in Figs. b - 8,

does not appear to be related to the ray model of the Lamb wave contributions to o, since

the shape of the modeled structure agrees with the PWS computation. The offset appears

instead to be related to the use of a rigid sphere model of ordinary forward diffraction.

Numerical tests show that the approximation for the total scattering cross section of a rigid

sphere, Eq. (10), converges to the exact rigid PWS result, Eq. (9). For example, atx =

75, Eq. (10) yields a value of 1.8965 for FlD/nta 2, while the exact result from Eq. (9) is

1.8971. The difference of these two calculations is 0.0006; while the offset at x = 75 is

0.0344. Clearly, the use of Eq. (10), instead of Eq. (9), for the ordinary forward
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Fig. 7 Like Fig. 6 except for ka > 70 where the extra curve with long dashes is a synthesis

which includes the sl Lamb wave contribution.
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Fig. 8 The comparison of the exact calculation (dashed) and the ray synthesis from the

contributions: IrFD, (Yao, OSo, a,1 and as1 .
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diffraction does not account for the offset. Furthermore, a comparison of a synthesis (not

shown), employing Eq. (9), with the exact PWS, Eq. (5), shows a similar offset. Hence,

the total scattering cross section for the rigid sphere is not entirely appropriate for the

description of the ordinary forward diffraction contribution to ct of an elastic shell. The

ordinary forward diffraction component is also not accurately modeled by the total

scattering cross section of a soft sphere. That cross section for a soft sphere approaches 2

from above as x --- and diverges to +- as x --* 0.14,28 It appears that the correct model

for aFD should lie between the values of the cross sections for rigid and soft spheres. This

conjecture may also be supported by computations6 indicating that for shells, poles in the

complex ka plane "tentatively associated with the Franz wave are considerably removed

from their counterparts for a rigid sphere, in the low-ka region."

It is noteworthy that the effect of including the sl Lamb wave near the right-hand

side of Fig. 7 is to reduce an even greater offset between curves which is otherwise

present. Inspection of Fig. A1 shows that in this region P1 for I = sI is relatively large

which suggests that rays having large [1 can give rise to a smooth shift in a[.

The structure manifest in Fig. 4 in the region x < 7 merits discussion. It is
apparently a,.ociatcd withrelatv,, cly closely spac• r•sonances sicc nca esonanccs, Me

phase and magnitude off in Eq. (3) can vary rapidly with x. Without attempting to model

detailed resonance manifestations it is possible to comment on the nature of the relevant

modes. It is shown in Eq. (A6) that the frequency of the lowest purely radial or

"breathing" model occurs at x = 6.3. Calculations of contributions tof(O = r) given by

Sammelmann et al., 6 based on a generalization of resonance scattering theory, indicate,

however, that the breathing resonance contributes weakly to scattering unless the shell is

much thinner than the one considered here. As evident from elementary considerations and
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the discussion of Eqs. (A4) - (A7), the breathing mcde is associated with the i = so Lamb

wave.

The structure in the region x < 7 is evidently associated with subsonic flexural (I =

ao) Lamb waves. Note that the peaks in the plot of ot]ya 2 are relatively similar in

appearance forx < 7 so it may be anticipated that the underlying mechanism is similar for

each peak. Furthermomre it is physically plausible that each of these peaks should be

associated in some way with resonance scattering, especialy since we are viewing the total

scattering in a region of x where CFD/rta2 is relatively small. What may be surprising is

that cy (and hence ae) has peaks of over four times the physical cross section, 7ta2, of the

sphere. The maximum having the lowest x occurs at x = 2.5. The elastic mode of a

spherical shell having the lowest natural frequency is ordinarily associated with the n = 2

(or quadrupole) partial wave with I = ao (or flexural) motion of the shell. (See, e.g., Ref.

6, 32, and 33.) In conjunction with the aforementioned peak magnitude of ce/na2, the

computations of Skelton and Waterhouse 33 of the acoustic energy streamlines in water near

slightly absorbing steel shells are noteworthy. Those calculations, which were performed

with an incident wave at the co of the n = 2 resonance, suggest that the energy streamlines
=A.. ,, , , a c-UA-•LuI4 tuCi IIzuLIh largr eria mthat of the

shell. (Computations of electromagnetic energy flow for light incident on particles34 have

similarly been useful for understanding large optical (Ye.) The other peaks in the region x :

7 are. evidently associated with resonances with n > 2. Spherical shells typically have

several flexural resonances with n > 2 at o below the breathing resonance. 32

2.6 Forward glory scattering, physical interpretation, and conclusions

The ray synthesis of the total scattering cross section ct for a 440c stainless steel

shell demonstrates the usefulness and power of this method. The simple parameterization
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of the ray model correctly gives the surface elastic wave resonance features of the Lamb

wave contributions. Furthermore, this pararneterization of at reduces the problem to only

the individual Lamb wave damping parameters, P1. and the phase velocity ratios, c/c1.

Thus, a simple physical interpretation of the observed structure in Figs. 3 - 8 can be

achieved.

These computations confirm the validity of the numerical methods used in obtaining

Pi and c/ci for the lth type Lamb wave. The above calculations give further support for

Marston's approximation, Eq. (15), for the coupling coefficient. 9 ,29 Also, Figs. 3 - 8

demonstrate the correctness of the assumed phase (Pl of G1. That is, if p1 differs

significantly from zero, then the contribution of the Ith Lamb wave to at would be altered

by the optical theorem, Eq. (3). For example, we have confirmed that setting (Pl = 7t

inverts the resonance structure in the synthesis and destroys the agreement with the partial

wave series result.

The ray shed in the forward direction from point B' in Fig. 2 appears to emanate

from within the sphere. The location of the virtual source may be constructed by

considering the crossing of the adjacent dashed ray which differs infinitesimally in

uItV. Dy r-IICUId1ILUUII UI d UIMAISNII givn In the•-ppIxUlV of eIf. 2U toihe pIeURt

case of forward scattering it may be shown that the virtual focus F1 where the dashed ray

crosses the forward ray is located a distance equal to the outer radius a of the sphere behind

the vertical line through C". Since Fig. 2 may be rotated about the C'C" axis, the virtual

source is ring-like and the forward directed wavefront has locally the shape of a circular

torus. Such outgoing toroidal wavefronts from spheres were previously investigated for

acoustical backscattering 2 ,5,35 and give rise to what has been termed "glory scattering"

because the enhancement of light scattering from cloud droplets (known as the optical

glory) is attributable to toroidal outgoing optical wavefronts.12
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From the discussion above it is evident that the structure in Figs. 3 - 8 attributable

to Lamb wave contributions is also a manifestation of forward-directed glory scattering.

The important point is that the rays associated with the Lamb waves couple on-to and off-of

the sphere with nonzero impact parameters so the associated outgoing wavefront is toroidal

and the contribution to the form functionf(0 = 0) is enhanced by axial focusing. While the

backward directed glory has long been of interest,12 Nussenz eig and Wiscornbe36

relatively recently noted that the forward optical glory of dielectric spheres gives rise to an

oscillation of the normalized optical extinction cross section which is quasi-periodic in the

optical ka. (The mechanism for producing optical glory rays in solid dielectric spheres is

somewhat different from that considered here for elastic shells.) The scattering pattern

associated with a forward directed optical glory has been observed it polarized light

scattered. from bubbles in a viscous silicone oil.37 Direct experimental evidence of forward

glory scattering of sound from shells due to Lamb waves ha. been obtained for scattering

of short tone bursts in experiments similar to those describcd in Ref. 5 but with the

hydrophone placed on the forward axis. 38,39 What follows ib a brief summary of an

observation relevant to the prtsent discussion.

OAu5Ar" LI "h~i, 1I Y'n% P 1ý1t"F•i-'".,.. o.........-,,,, r.ieco ,.,. ..•.. of , i,,e 'a.vt,• o•,• ft,,-,m a h.y'r"pho-"e pl,,ced on

the forward axis, The sphere is 440c stainless steel of radius a = 19.05 mm and b/a =

0.838. The incident burst was four cycles of a 653 ktlz sine wave which corresponds to

ka = 53. The experimental technique is similar to the one described in Ref. 5 for

backscattering from the same shell. The large burst is attributable to rays in the water

which graze the sphere. (That may be demonstrated by removing the sphere and observing

the arrival time of a signal diiectly from the source.) The burst which arrives 11 Ips prior to

the large burst is attributable to forward glory scattering associated with Lemb waves on the

sphere. It arrives prior to the large burst since the (slower) grazing ray has its entire path in
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water. From inspection of Fig. 2, the burst which travels along path ABB'A'is advanced

in time relative to a burst which just grazes the sphere at point E by an amount

At= (2a/c) cos(6/) - (a/cg )(nr - 20/), (17)

where the calculation of the group velocity cgl for the Ith Lamb wave is discussed in Ref. 5.

This burst is associated with the m = 0 term in Eq. (12). It is noteworthy that for

supersonic Lamb waves (cl > c) where Fig. 2 is applicable, that Atl > 0 when (as is usually

the case) c.1 > c. For the sphere under consideration, Eq. (17) predicts Atl = 11 pts for

both I = a0 and so when ka = 53, in agreement with the observations. From the arrival time

alone it is not possible to discriminate between I = ao and so Lamb waves mechanisms at

this ka. (At other ka, the calculated Atl for these I differ.) The late structure of the record

shown in Fig. 9 is at least partially associated with Lamb waves which have traveled

completely around the shell and radiate in the forward direction. A direct comparison of the

amplitudes of the Lamb wave and edge diffracted bursts in Fig. 9 is not easily made with

theory because of complications in calculating the edge diffracted ray amplitude for an

observer not in the far field. Nevertheless, from the arrival time and appearance of the

early burst in Fig. 9, it can be concluded that forward directed Lamb wave contributions to

scattering may be readily observed. It was also observed 38,39 that the amplitude of the

early Lamb wave burst decreases as the receiver is moved off the axis in the way

characteristic of axially focused (or glory) scattering, 2,5,35

Consider again the total cross section and form functions characteristic of steady

state scattering. Inspection of Figs. 7 and 8 reveals the presence of a broad structure

having a quasiperiod Ax = 9. This structure is primarily due to the variation in phase with

ka of thefi contribution with I = ao as shown by the analysis which follows. From

inspection of Eqs. (3) and (14) it may be anticipated that oa contains a structure periodic in



44

FD-..
1

0.

0-
C1.

0 20 40

Relative Time (4s)

Fig. 9 Time record of on-axis forward scattering of a 653 kHz 4 cycle tone burst from a

stainless steel shell. The contribution labeled FD is associated with ordinary forward

diffraction. It is preceded by a contribution labeled LW attributed to Lamb waves because

of its arrival time. The observation experimentally confirms the existence of a forward

directed Lamb wave contribution. The structure following the FD burst is at least partially

attributable to repeated circumnavigation of Lamb waves, though there may be some weak

scattering from a three-proriged wire mount which supported the sphere.
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ci:anges of til by -2n. (It is noteworthy here that at resonance 3,9 exp(i2txc/cl) = -1 and the

denominator iii Eq. (14) has a specific phase.) From Eq. (13), the change inx associated

with A111 = -2n may be approximated as

Ax, A 2nt[2 cos(61) - (c/c 1)(t - 20]-1 (18)

provided that cl depends sufficiently weakly on x that dispersion may be neglected. Of

particular interest is the result that for 1 = ao, cl/c increases only from 1.95 to 2.04 as x

increases from 50 to 100. Taking ka = 75 gives cj/c = 2.028 and Eq. (18) predicts AXl

9.0 in agreement with the quasiperiod manifest in the calculations. The apparent relative

importance of the I = ao contribution to the underlying structure may be attributable to the

relatively large value of the associated I Gl I evident in Fig. 13 of Ref. 5. (The I = so

contribution may also produce a superposed broad structure in cy,; however, it is more

difficult to estimate the associated quasiperiod because of dispersion.) Note that the

separation Ax1 is not directly caused by the separation of specific resonances though the

finer structure in at is attributable to resonances. When the surface elastic waves are only

weakly dispersive the spacing between resonances may be approximated as Axlres ;c Cgl/c

(see, e.g., Ref. 7) and when dispersion is negligible this becomes9 Axlres = cjlc. Hence

for I = ao and the ka region considered above Axires = 2 which is much less than the

quasiperiod of the broad structure.

Nussenzveig and Wiscombe 36 note that the structure in the optical cyt of dielectric

spheres (which is quasiperiodic in ka) arises from an "interference between the forward

diffraction peak and forward glory contributions ... ". Though the details of the glory

contributions differ here, this interference condition also leads directly to Eq. (18) for

weakly dispersive Lamb waves. IThis may have been anticipated by comparing the form

of Eq. (18) with the consequence of setting in Eq. (17), At1 to an integer multiple of the
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wave period 21t/co.] Another example of a broad modulation of a cross section is that of

backscattering from a tungsten carbide sphere discussed by Williams and Marston. 3 For

certain ka regions, resonance reduces the total amplitude, but at other regions, it causes an

increase. In that case the relevant interference was between the specular contribution and

the contribution due to Rayleigh waves on the sphere.

There has been increased interest in ray treatments of wave propagation on

cylindrical shells.8,9 ,40,4 1 It seems appropriate therefore to comment on the conn. "•tion

between ray methods for leaky surface elastic waves on cylinders (Sec. V of Ref. 9) with

the present results for the forward glory of spheres. The connection is as outlined in Sec.

VI of Ref. 9 where it is shown that ray results for cylinders may be adapted to construct the

farfield amplitude due to surface elastic waves on spheres. The GI used here in Eqs. (12)

and (14) and elsewhere in Refs. 1, 3, 5, and 9 for spheres is descriptive of farfieid

amplitudes. The coupling coefficient GIcY for cylinders (Ref. 9, Sec. V) is at leasL

approximately descriptive of near field as well as far field amplitudes. The cylinder

analysis facilitates the approximation of the local amplitude of the outgoing toroidal

wavefront near a sphere [Eqs. (54) and (57) of Ref. 9] and the approximation of the

diffraction integral for glory scattering 35 relates those local amplitudes to the far-field form

functionft. [See Eq. (55) of Ref. 9.] It is the intent of one of us (P.L.M.) to give a more

detailed description of the connection of results for spheres and cylinders in a subsequent

publication. 42

It is noteworthy that since the optical theorem in its most general form 11 ,12,1.9-21

relates ae to the forward scattering amplitude, it is applicable to objects having complicated

shapes. In principle, at high frequencies ray methods could be developed to estimate

forward acoustical amplitudes and give approximations for oe of complicated objects.

Furthermore, ray methods could be used which include absorption by the object.
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Appendix A. Lamb wave damping parameters, phase velocities, and the

effect of the breathing mode

The Lamb waves considered in Ref. 5 are the lowest antisymmetric or flexural

wave, a0 , and the lowest symmetric wave, s0 . The material and geometrical parameters for

the particular shell studied in Ref. 5 are given here in Sec. 2.5 and the range considered

was 20 < x < 75. We extended, here, the range of x = ka for both a0 and so to 7 < x <

100. Furthermore, we find that the a1 and s1 waves can be excited on the elastic shell for x

greater than 41 and 70, respectively. The contributions of the a, and s1 waves to a1 are

discussed in Sec. 2.5.

The numerical method, implemented in the determination of f0l and cl/c is given in

Appendix A of Ref. 5. The equaLions to be solved are based on applying Watson

transform methodology given for solid elastic spheres1 ,3 to the case of a spherical shell. 5,9

The relevant results are as follows:

Dv (x) =0, (Al)

Vl1 = a I + ipl1, (A2)

(cI/c) = x/(• 1 + 1/2), (A3)

Equation (A1) uses the determinant in the denominator of the PWS, Eq. (4), for the elastic

shell; where the integer index, n, has been replaced everywhere by the complex index, vj.
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The complex index, vi, is obtained by solving Eq. (Al) at fixed values of x. The damping

parameter, 1j = Im{(vl, is immediately obtained (as a function of x) for the ith type Lamb

wave. Figure A 1 is a plot of vi for four Lamb waves that can be excited on the shell

considered. It should be noted that the radiation damping is not necessarily weak.9 In

solving Eq. (A 1), Bessel functions of the first and second kind of complex order and real

argument y must be calculated. A discussion of the algorithm employed for these functions

is given in an appendix of Ref. 43. When the conditions I vi I > 3 and y/A vl 1 10-6 hold,

then the calculated values are asserted to have errors of less than 0.00001 + iO.00001.

From inspection of Fig. A1, it is found that for the so and al Lamb waves the condition I vi

I Ž_ 3 is violated at small ka. However, the computations presented in Sec. 2.5 suggest that
the accumulated error from these two contributions are not sigi Licant. We did not search

for roots corresponding to a generalization6 of rigid-sphere Franz waves .o the shell since

those would be expected to have large PI' and cl near c.

The normalized phase velocity is determined by using Eq. (A3). The dispersion

curves for the various Lamb waves are displayed in Fig. A2. There are three features that

are important to note. First, the normalized velocities for the a1 and s1 Lamb waves appear

to diverge as they approach their cut-off frequencies. (These cut-off frequencies are

analogous to the cut-off frequencies for the propagation of particular modes in a

waveguide. There is, however, additional structure near the cut-off of the Sl mode, the

detail of which is not shown in Figs. Al and A2.) Second, the cl for I = so appears to

diverge as .o approaches the natural frequency COB of the lowest purely radial or "breathing"

mode of the shell. This divergence is plausible since radial motion of a shell can have the

same phase at all surface points when co = o0 B. For a thin spherical shell in a vacuum, w3

is related to the lowest purely radial or "ring" frequency o) of an infinite cylindrical shell

of the same material via the approximation
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Fig. A1 The loci of roots, vj, from Eq. (Al) for the aO, so, a,, and s, Lamb waves on a

fluid loaded stainless steel shell. These loci are respectively the solid, short-dashed, long-

dashed, and short-long dashed curves. The arc length along each curve is monotonic in ka

and the lower and upper values of ka are indicated.
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a

2

ka

Fig. A2 Normalized phase velocities along the outer surface of the shell, for ao, so,
al, and sl Lamb waves. The legend is as in Fig. AI except that adjacent to each curve isone with short dashes which was calculated from plate theory corrected approximately forcurvature as described in Ref. 45 and Eq. (A8). Note that the true ct, I = so, appears to
diverge as the ka of the breathing mode is approached.
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CO = [2(l + V)] 1f2o 'R,(4

where V denotes Poisson's ratio which for 440c stainless steel is 0.296. Equation (A4)

follows from Eq. (7.114) of Ref. 32. For a thin shell 32

(oR - cpL/, cpL = [E/(1 - V2)PSI = 5.31 mnVgs, (A5)

where E denotes Young's modulus, cpL is the low-frequency phase velocity of

compressional waves in an elastic plate and ý = (a + b)/2 is the middle radius of the shell.

(The combined result for COB also follows from Love.44) If the effects of fluid loading on

resonance frequency are completely neglected, the estimated ka of the breathing resonance

is
_ Ba 1/21 (h2)-1c

XB ---- Ca [2(l + V)] - L/c) = 6.3 (A6)

where h = a - b is the shell thickness. For a shell surrounded by water, fluid loading

reduces XB by a fraction of order

mB/psh = (p/Ps) (a/h) x2, (A7)

where mB = pa xB"2 is the relevant "model accession to inertia" ratio.32 Since mB/PpSh

0.018 << 1 for the sphere.considered, fluid loading should cause xB to be reduced only

slightly from the estimate based on (A4). The third feature is a cut off frequency for the si

wave. It is somewhat analogous to the cutoff near the breathing mode since it lies close to

the condition ka - 7clc(1 - b/a) = 77 of the lowest thickness resonance discussed in Sec.

III of Ref. 5.

The shortest dashed curves in Fig. A2 are the results of introducing a curvature

correction4 5 into Lamb's equations (given in Ref. 5) for a flat plate in a vacuum. The

thickness of the plate is the thickness h = a(1 - b/,) - 3.1 mm of the shell. The

approximate curvature correction gives t• phase vetocity r~ivi3 as45
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(c, /c) = [(c][I - (h/2a)] (A8)

where, (Cl)p is the phase velocity of the lth Lamb wave on the plate. The comparison in Fig.

A2 shows that a useful initial estimate of the phase velocity ratio can still be obtained

through Eq. (A8) and the plate equations. The deviation of the so result from (A8) with the

proper value from (A3) is a manifestation of the hoop stresses associated with the breathing

mode discussed above. The difference between the curves for both the al and Sl Lamb

waves may be due to the radiation loading. The curvature of the plot of cl/c with I = sl at

the mode onset may be associated with the relatively large value of PI evident in Fig. A 1.

Root computations not shown in Figs. Al and A2 indicate that there is a mode for

which the low-frequency cut off is at x - 83 for which cl/c always exceeds 8 in the region

between this cut off and x = 100. We have tentatively identified this mode as the s2 mode.

Computations indicate that it does not significantly affect ar in the region considered,

evidently due to the smallness of the clel factor in Eq. (15) and the magnitude of 131.
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Chapter 3

Longitudinal resonances in the form function for backscattering from a

spherical shell: Fluid shell case

Abstract

Reverberations of longitudinal waves in a hollow shell can strongly affect the

backscattering amplitudes at frequencies associated with a thickness resonance. The

phenomena is studied for the idealized case of vanishing shear stresses in the shell material

by taking that material to be an inviscid fluid. The sound speed cL for the fluid is taken to

be that of longitudinal waves in elastic materials of interest; the surrounding fluid being

water. An exact partial-wave series gives the form functionf for backscattering and plots

of IfI as 4 function of ka display resonance features where a denotes the outer radius of the

shell. These features are also recovered in a direct geometrical calculation off which sums

the amplitudes associated with rays multiply reflected within the curved shell. This

geometric synthesis shows that the effects of curvature are essential to modelingf. In

addition to numerical comparisons with the partial wave series, the geomeuical calculation

is tested by considering several limiting cases and results anticipated from elementary

consideration are recovered.
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3.1 Introduction

Various authors have considered how resonances affect the reflection of sound

from flat elastic plates1 and fluid layers.2 Others have considered the significance of

surface guided wave contributions to the backscattering of an incident plane wave from

elastic spherical 3-6 and circular cylindrical shells.6-8 The scattering amplitude can be

represented in terms of contributions from surface guided waves which circumnavigate, the

shell, continually radiating energy into the surrounding water. This surface guided wave

representation can give a simple quantitative description of resonances which has been

studied in detail for solid spheres. 9 ,10 When exploring such a representation for elastic

shells, 11 we have seen a justification for inves'dgating the reverberation of bulk waves

transmitted through curved shells which reflect from the inner surface. Associated with

transmitted (bulk) longitudinal waves are thickness resonances. 3 ,12 To isolate the

contribution of reverberation of transmitted longitudinal waves from other contributions,

we restrict our attention to backscattering from an evacuated, idealized spherical fluid shell

in water. This simplification allows a quantitative ray representation of the scattering

amplitude to be developed and tested witho3ut considering contributions associated with

transverse waves. The testing of ray models for fluid objects can be justified because of

insight gained into the behavior of more complicated situations. 13

The usual condition for the existence of a longitudinal resonance is that the

thickness of an empty shell should be an integlai number of XJ2 where %,L is the

longitudinal wavelength within the fluid. This condition is applicable when the impedance

peCL of the shell material exceeds pc of the surrounding fluid. For an incdent acoustic

plane wave with r;ngular frequency v), the resonance coodition can be .,rituen as

k L h = n it,( n -- 1 2 . . .)( )
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where kL = o)/CL is the wavenumber and cL is the speed of sound in the fluid.3 As will be

shown below, the manifestation of thickness resonances is contained within the specular

reflection form function fsp and is intimately related to the curvatures of the inner and outer

surfaces of the shell. Examination of Ifsp I shows that the effects of curvature are largest

for those kLh satisfying Eq. (1).

The organization of this paper is as follows. A derivation of a ray acoustical

representation of the form function is summarized in Sec. 3.2. This geometrical synthesis

offsp decomposes into a contribution for the reflection from a vacuum-backed flat plate and

a curvature dependent component,fcc. In Sec. 3.2, the synthesis is compared with exact

computations employing the partial-wave series (PWS) representation of the form function

for backscatter. Section 3.3 examine the significance of the curvature correctionfcc.

With-n Sec. 3.3, the most significant contributions tofc are observed to occur at the

resonance condition Eq. (1). To further support the claim that the form obtained forf~c is

correct, Sec. 3.4 considers several limiting cases of the fluid shell parameters. Each

limiting case produces the expected result and thus supports the geometrically derived form

of the curvature correction. Section 3.5 contains concluding remarks and notes the

importance offcc to the scattering of an acoustic plane w; ve from an elastic spherical shell.

"The article contains three appendices. Appendix A contains the essential details of

the matrix method employed in detenmining the geometrical spreading factor and amplitude

coefficient introduced in Sec. 3.2. As noted in Appendix A, the matrix method is similar to

the paraxial matrix methods of geometric optics. Appendix B i:; included for completeness

and contains infomation pertinent to the PWS representation off for backscattering from a

fluid shell. Finally, Appendix C describes a technique which rapidly surns the infinite

series infc,. 14 An example of the rapid summnation technique is compared to the cxact

summation of the series where the convergence of the series is explicitly tested.
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3.2 The specular reflection for a fluid shell from geometric ray methods.

Consider an empty spherical shell of inviscid fluid embedded in a fluid (water).

The outer radius of the shell is denoted by a and the inner radius is given by b. The interior

of the fluid shell is taken to be a vacuum. That is, the inner surface at b is a pressure

release surface. The relevant parameters for the water are the sound speed, c, and the

density, p. The sound speed and density of the fluid are CL and Pe, respectively. The

scattered pressure in the farfield is

afekr
S ep0 ' (2)

where the harmonic time dependence exp(-ict) has been suppressed. 6 ,9 The wavenumher

of t) ie incident plane wave in water is k = (o/c = 27rf where (o is the angular frequency and

4 is the wa, elength. The pressure amplitude of the incident plane wave is Po and the

distance from the center of the sphere to an observation point is t. The scattering amplitude

or form functionj, can be approximately partitioned asf fsp +fsw wherefsp is a

contribution from a specular reflection andfAw is a term associated with the possible

excitation of surface guided waves. As stated above, Sec. 3.2 is concerned with a

geometric synthesis of'p.

Figure 1 is a simplified ray diagram for the backscattering of an acoustic plane wave

from an ideal fluid spherical shell.. The plane wave is assumed to be traveling in the

positive z-direction and the origin of the coordinate system is located at the center of the

shell at point 0. Pie z-axis coincides with the line SO. The specular reflection appears to

come from the point S. This point may be referred to as the specular point.15 A ray,

perpendicular to the wavefront, with impact parameter s propagates from point A to point B
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Fig. 1 The ray diagram for the geometric synthesis of the specular reflection form

function from a vacuum-filled fluid shell. The point S is the vertex of the refracting surface

and 0 is the origin of a coordinate axis located at the center of the shell. The inner and

outer radii are denoted by b and a, respectively. A ray, infinitesimally close to the z-axis,

SO, is incident on the fluid shell with impact parameter s. The ray ARC is the normal

specular ray; while rays ABDEF and ABDEGHI are the first two internal reflection

contributions. At the points B, E and H partial reflection and/or transmission of a given ray

occurs. The internal rays are totally reflected at all points on the inner su~face r = b.

Intersections of the projection (dashed lines) of the outgoing rays (BC, FE and HI) and the

z-axis define locations of virtual point sources which determine local curvature of the

outgoing wavefront associated with a given ray. The virtual point sources are denoted V.

(n = 0, 1, ...) and the local backscattcring angles are y.. Superpositiorn of the acoustic

wavefields from the virtual sources in the limit 'yn --- 0 gives an expression for the specular

reflection contribution to the form function for backscatter as described in Sec. 3.2 and

Appendix A.
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on the surface of the shell. Rotation of the ray diagram about the line SO generates all rays

having an infinitesimal impact parameter s. At B the ray is partially reflected back into the

water and partially transmirted into the fluid shell. The intersection of the reflected ray BC

(dashed line) and the z-axis at VO defines the location of a virtual source. For backwards

and near backwards directions, spherical aberration may be neglected and this virtual

source may be modeled as a point source. With the appropriate amplitude and phase shift,

this virtual point source desciibes the propagation of the local outgoing wavefront

associated with ray BC. The transmitted ray at B is refracted and propagates along the path

BD. After total internal reflection at D, the ray propagates to E and is, again, partially

rnflected and transmitted. The transmitted ray EF, after refraction, can be projected back to

a second virtual source located at V1. The partial reflection and/or transmission and

refraction of subsequent rays at the outer surface generates an infinite set of virtual point

sources located at points V,,. Hence, each virtual point source describes the local outgoing

wavefront associated with a specific ray.

For each point V,,, define the local backscattering angle, "yn, as the angle between

the outgoing ray and the z-axis (set, F•ig. 1). As the impact parameter approaches zero, the

Inc.al haerk- rntt/ri or nnalp .¢n -on tn 7pmrn T-I~nr, nev v -. A . thA rnntriiatirtn nIf thh.

specular reflection to the backscattered farfield pressure can be expressed as a superposition

of the acoustic fields from the virtual point sources. In particular, the farfield specular

pressure is

e)= H0 r + IlnCne L -i2x,Ps• ~ I 0-- n = I 3

where h = (a - b) is the thickncss of the shei' and x = ka is a dimensionless size parameter.

The 2x phase shift in Eq. (3) accounts for the path length difference between a ray
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propagating in water from point S in Fig. 1 to 0 and back to S and a ray which is reflected

in the backward direction at S. The quantity Iln is a geometric spreading factor associated

with the nth virtual source. An expression for H,1 is derived in Append-x A using a

geometric method analogous to the matrix methods of geometric optics. The factor Cn

accounts for the partial reflection and/or transmission of the ray at each surface (see

Appendix A). The exponential factor within the summation is the additional phase delay of

a wave which reverberates n times within the shell before being transmitted in the

backscattered direction. Th longitudinal wavenumber is kL = 0o/cL =27/t.L where ).L is

the wavelength of the acoustic field in the fluid. Finally, r is the r,•flection coefficient for an

acoustic plane wave at normal incidence on a flat liquid-liquid interface. The reflection

coefficient is
PeCL - pc

PeC L + pc

for the above material parameters.

Using Eqs. (A7) and (A8) for Hn and Cn, the contribution of the specular reflection

to the backscattered farfield pressure is

. ( 2, - .- , ;__

Ps ?P0 r- ') re --n i2x, (5)L = rn=1

where a = 2kLh = 2x(c/cL)(l - b/a). Equation (A6) defines B which depends only on the

relative index of refraction ML = c/cL and the ratio of radii bla. Comparison of Eq. (5) with

Eq. (2) reveals that the specular reflection contribution to the backscattered form function is

"2,sOJ ena i2x (6)
n+n
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Although Eq. (6) is a geometrical synthesis of the specular reflection form function, it can

be expressed in a manner more easily understood. 16 Simple algebraic manipulations allow

one to rewrite Eq. (6). First, the factor [1+ nB]-1 is expressed as 1 - nBB[l+ nB]- 1. With

this substitution, the infinite series in Eq. (6) splits into two series. The summand of the

first of the resulting series is (reio,)n where I reiLC I < 1. Comparing this series with the

geometric series demonstrates that the first series is summable and is equivalent to reia[ 1- r

ei~Q]. Substitution into Eq. (6) leads to

f= S e-i2x + (7)

where
~r (!-r2)e((1 -!"r2) •"nBr"ein't

R= r )ei. = r l+cnBD, )ei2x' (8a,b)

re n=lI

Equation (7) is the desired expression for the contribution of the specular reflection to the

backscattered form function. Define ?p = _xp(-i2x); the coefficient Ris the complex

reflection coefficient for a vacuum-backed flat plate of thickness h at normal incidence.7

The phase shift exp(-i2x) is due to the phase reference at the shell's center used in Eq. (2).

Hencefp describes the. reflection from a spherical shell where the complex reflectivity is

modeled as that for a flat plate. Consequently, Eq. (8b) accounts for the correction tofsp

due to the curvature of the shell within the geometric approximation. At present, an

analytical expression forfcc is not available, however, a rapid summation technique can be

employed to perform the indicated summation (see Appendix C).

Figures 2 and 3 are comparisons of the exact PWS calculation of If I with the

geometrical synthesis as given by Eqs. (7) and (8). Appendix B contains the PWS

representation forf and some relevant remarks concerning its computation. These
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Fig. 2 The solid curve is the exact PWS computation of the form function for

backscattering for a 4% thick aluminum fluid shell with the parameters listed in Table I.

The geometric synthesis of the specular reflection contribution is the dashed line and is

calculated via Eqs. (7) and (8). The broad minimum at x - 340 is the lowest longitudinal

resonance. Without the curvature correction (as discussed in Sec. 3.3), the synthesis

would not model the longitudinal resonance since the synthesis simplifies to I.•p I=z 1.
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Fig. 3 The exact PWS and geometric synthesis are the solid and dashed lines,

re. iectively. These computations are for a 16.2% thick 440c stainless steel fluid shell (see

Table I). The broad dip at x - 76.8 corresponds to the first longitudinal resonance. The

oscillatory behavior in the ranges 0 < x < 40 and 77 < x < 100 is presumably attributable to

waves in the fluid shell shedding energy into the water while circumnavigating the shell, as

such contribu,;ons were not included in the synthesis,
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computations are intended to give insight into the more complicated problem of resonances

in backscattering from elastic shells, so the choice of the fluid parame ters corresponds to

elastic material parameters instead of parameters for actual liquids. The parameters for the

fluid shells and surrounding water, used in the various calculations, are listed in Table I.

Figure 2 corresponds to an aluminum fluid shell with b/a = 0.96 where the solid line is the

PWS result and the dashed line is the geometrical synthesis. The resonance condition, Eq.

(1), predicts the first thickness resonance occurs at x = 340. Clearly, the broad minimum

in Fig. 2 corresponds to this longitudinal resonance. The synthesis of Ifsp I and If I via the

PWS are in e: -ellent agreement forx >> 0.

A 440c stainless steel fluid shell with b/a = 0.838 has its first longitudinal

resonance at x = 76.8 (see Fig. 3). The material parameters of 440c stainless steel and this

particular value of the radii ratio correspond to the properties of a spherical shell studied

extensively in experiments with tone bursts.3 As in F•ig. 2, the solid and dashed lines are

for the PWS and geometrical synthesis, respectively. Again, the broad dip atx = 76.8 in

Fig. 3 is a manifestation of the longitudinal resonance and the synthesis is in good

agreement with the PWS calculation. The oscillatory behavior observed in Fig. 3 is

attributable to the symmetric (or vi) sniface guided wave which conihiitbtes si.gnificantly to

the backscattering for x > 76.8. That is, the contribution offsw to If I is no longer

negligible for the 440c stainless steel fluid shell. The shell acts like a curved fluid

waveguide which leaks energy back into the surrounding water. 17

For fluid shells where PeCL < pc, the resonance condition in Eq. (1) does not

apply. The proper expression for predicting a thickness resonance is kLh = (n +1/2)7t, (n =

0, 1, ...). Since internal rays reflected at r = a do not sustain a 7t phase shift, then the

resonance requirement of the internal rays adding in phase leads to the additional 7t/2.

Although the resonance condition is different for PeCL< pc, Eqs. (7) and (8) still describe
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TABLE 1. Material parpmeters used in the calculations.

Pe CL c p

Fluid/Water (g/cm3) (knVs) (knVs) (g/cm3)

alurninurn/water 2.70 6.42 1.4825 1.00

440c stainless steel/water 7.84 5.854 1.479 1.00
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the specular reflection contribution to the form function for backscattering. Figure 4 is a

comparison of the PWS result and the synthesis using Eqs. (7) and (8). The fluid shell and

water parameters are the same as the 440c stainless steel parameters with b/a = 0.838

except Pe = 0.1 g/cm3. The modified condition predicts the first thickness resonance at x

38.4, i.e. half the resonance value for the high impedance case of 76.8. Inspection of Fig.

4 demonstrates that the geometrical model agrees with the exact PWS result.

3.3 The importance of curvature to I fsp I

An examination of the curvature correctionfcc is merited. The significance of the

shell's curvature to the manifestation of thickness resonances can be elucidated by

examining its dependence on kLh. First, it is noted that the flat plate contr•bution fp,

alone, does not reproduce the longitudinal resonance siructure observed iii Ifl since

Ifp I = 1. The approximation If I =ifp I does not exhibit structure at values of x which

satisfy Eq. (1). To obtain the minima, the curvature correction fee needs to be included

such that If I = Ifp +fcc I. The resonance condition indicates that IJ' I should. have its first

maximum at kLh = x when pecL > pc. For a specific fluid, the curvature correction

depends on the two parameters x and b/a. For the discussion below, the material

parameters are those of 440c stainless steel.

In Fig. 5, Ifcc I is plotted as a function of kLh = XML(l - b/a); where x = 20 or 60 is

held fixed while 0 < b/a < 1. For fixed x, v/a = 1 corresponds to kLh = 0 and as b/a --) 0,

kLh -*, xML. The peaks in Fig. . are at the expected valae kLh = 'r and these peaks tend to

be narrow resonances in the variable klh. The interpretation is, that for fixed x, shells with

h in the vicinity of XL/2 can support the first thickness resonance. Computations for larger

values of kLh exhibit similar sharp peaks at the higher order longitudinal resonances.
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Fig.4 The parameters here are like Fig. 3 except that Pe = 0.1 g/cm 3. The condition in

Eq. (1) no longer applies for this case since PeCL < pc. The correct resonance condition

becomes kLLh = (n + 1/2)7r, (n = 0,1 .... ) and predicts a longitudinal resonance at x 38.4.

Comparison of the PWS (dashed) and the synthesis (solid) shows a minimum at x 38.4.

"The material parameters for these computations are given in Sec, 3.2.
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Fig. 5 The magnitude of the curvature correction fce(ki h) for fixed values of x and,

variable b/a. The solid curve is for x - 20 and the dashed line is for.). = 60. The sharp

peaks occur at the expected value kLh = n where the first longitudinal resonance is

supported within the fluid shell. The material properties of the shell colrespond to 440)c

stainless steel.
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Thus, a thickness resonance can be excited within a fluid shel! at fix.ed x provided h is in

the vicinity of an integral number of X/2 .

The resoniance condition still holds if b/a is now hIeld constart and tiic frCquen,1cy of

the incident planr wave is varied, Figure 6 displays IfccI where b/a = 0.838 (solid line) or

0.920 (dashed line) and x = ka -- a/l-, is varied. The linear' relationship btetween Y, and kj~h

implies that as x increase-s kL/i increases, Although, the sharp peaks in Fig. 6 occur at kLh

=- 7c, the interpretaticrn of the physical nature of the. peaks is more. subtle. Inspection of Fig.

6 reveals that the width of the peaks axe comparable; however, the x values at which the

two peaks occur are different. These .x aro appi-oximatcly 76.8 and i55 for b/a =0U38 and

0.920, respectively. From the resonanrce condition, it is inferred that the :ange of x, for

which a longitudinal resonance is excited, is wider for a thin shel1 than a thick shfll of the

sarre fluid. Fur-theirinore, comparison of Figs. 2 and 3 illiismtrtes thc width in x is strongly

affected by the parameter ML(l - b/a).

3.4 Limitinig cases for scattering of an acoustic plane wave from ail ideal,

fluid shell

A. S~cattering from a p~erfectly soft bubble

For the 'Limiting case b -+ a, the fluid shell becomes a perfeci-ly soft bubble and Eq.

(7) should describe the linear baickscattering of an acoustic plane wave fromp a bubble of

radius a within theý geomtreic limit. For b -4 a, inspection of Eq. (A6) reveals thc constant

B --4 0 which leads to the result that the curvature correction componenit in Eq. (7) also

vanisihes. In this hinit, it is straightforward t.o 3howfsp =f4 -exp(-i2x). In Sec. 3.2, R(

was found to be the complex reflection coefficient focr a vacu wm- backed flf-t plate. Sinct

the, thickness of the plate is approac~hing zero, then the plate becomnes a water-vacuum

interface. The refiection coefficient for a norinal incidence plane wave in water on a
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Fig. 6 1he. magnitude of fcc(kLh) for fixed values of b/a and vaiiable x. The solid curve
;s for b/a = 0.838 and the dashed line is for b/a = 0,920. As in Fig. 5, the narrow peaks
occur where the fir:,t lorigituinal resonance 1,s supported within the fluid shell and the
miaterial paamneteis are for 440c statinless steei
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pressure release surface is -1. Hence, Eq. (8a) reduces to the expected value and the

backscattered farfield pressure due to the specular reflection becomes

a e-i2x eikr(9)
Psp -- P0 •(9

The upper two curves in Fig. 7 are If I and Ifp I where the dashed line is the PWS result

within the limit b --a a and the horizontal line is the magnitude of the form function

obtained from the acoustic ray method.18 Both If I and Ifspl are scaled by b/a = 0.838 in

Fig 7. The reason for this scaling will be discussed in Sec. 3.4B. For x > 20, these

curves become indistinguishable; while for values of x < 20, the PWS deviates

substantially from the synthesis. This result may be, anticipated since geometrical acoustics
is impliciftly a high-fr-equencvy annroxpima ion.

B. Scaltering fron, ant imnpedance-matched fluid spherical shell

For the scattering from an impedance-iatulitAl fluid, the reflection coefficient

defined in sq. (4) is identically zero. That is, PeCL =: pc for an impedance-matched fluid

and r = 0. Equation (7) reduces to

. ei_ _ (_-i2x. (10)
fsp I ++B- "-

where B is defined by Eq. (A6). Figure 7 contains computations of If I and I.f[p I for a

fluid with the sound speed of 440c stainless steel and Pe was determined from Pe = PML.

The lower two curves in Fig. 7 are for this limiting case. The dashed line is the exact PWS

result and the horizontal line corresponds to Eq. (: 0). Although, the two carves are vastly

different for x < 40, for x = 50 the difference between the may tracing synthesis and the

PWS is less than 7.2%. It is anticipated that the agrcument will improve as x becomes

large.
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Fig. 7 The upper two curves are for the limiting case of the scattering from a perfectly

soft bubble. The horizontal line is Ifsp I and the dashed line is If I caiculated via the PWS

result. Both curves have been scaled by 0.838 (see Sec. 3.4B). The lower set of curves is

the limiting case of an impedance-matched fluid (i.e., PeCL -" pc). Again, the horizontal

line is I fsp I and the dashed line is the PWS for I. 1. The two sets of curves demonstrate

that the synthesis offsp correctly approximates the high-frequency scattering for these

limiting cases.
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Within the impedance-matched fluid case, there is the special case Pe = p and CL

c. That is, the fluid shell is essentially a perfectly soft bubble of radius b. The

denominator of Eq. (10) becomes (1 + B) = a/b and the phase shift a = 2kh. Equation (10)

in this special case reduces tofsp = -(b/a)e-ikb which gives

b -i2kb ik-.r'

Psp = T e e , (11)

for the contribution of the specular reflection to the backscattered, farfield pressure.

Comparison of Eqs. (9) and (11) gives the motivation of the scaling of the upper two

curves in Fig. 7 by b/a. That is, Eq. (11) is the expected backscattered pressure from a

bubbIl of radius b in the geometric limit.

C. Scattering from a fluid sphere

The final limiting case is the backscattering from an ideal fluid sphere. 13,18-20 For

a fluid sphere the inner surface has vanished (b -- 0) and the derivation of the spreading

factor H. in Appendix A is no longer applicable. That is, the rays are reflected from the

opposite side of the sphere and henct, from a surface with a radius of curvature of -a. To

properly determine the limiting form of the specular reflection form function, the refractive

powers given in Eq. (A3) need to be redefined by allowing b -ý -a. Alternately, the

appropriate form function can be obtained by taking tile limit b --+ -a in Eq. (7). The result

is

-s(1 r- ) - ML2n r2Aeina -i2x, (12)

n--1 L)

where a = 2kLh == 4 kLa. The magnitude of the contribution of the nth internal ;ay tofVP is

I(1 - r 2)r2 n-lM,/ (2n .M ,L)I. Compati_.on of Eq. (34) of Ref. 13 with the magnitude of

the ar Interna! ray hcre shnws that for the fluid sphens limit Eq. (7) redu'.es to thv



79

appropriate form. It is noted that the rays here are enumerated consecutive while the

numbering scheme in Ref. 13 is based on the number of internal chords associated with

each ray. Finally, it can be shown that the results here for n = 1 are equivalent to those

given in Appendix C of Ref. 13 for the first axial ray.

3.5 Conclusion

When the incident wave is at a frequency of a resonance, the terms of the series in

Eq. (5) are mutually in-phase: there is constructive interference between all of the internally

reflected backward directed rays. At resonance, the externally reflected ray (which reflects

from S in Fig. 1) interferes either destructively or constructively with the summed

contributions of the internally reflected rays, depending on the sign of r. For the usual case

where r> 0, Eq. (1) gives the resonance condition. Unfike the series for sequential surface

wave contributions, which may be expressed in a Fabry-Pcrot form,6,7 ,10 the series in Eq,

(5) does net geneially take on the form ot a gcometric series. If the radius of curvature of

the shell is truly negligible in comparison to the thickness, B = CLh/cb -ý 0, and the series

becomes a geometric series. That seiies, when summed, gives the first term of Eq. (7)

since the cuirvatiire conrrectoinnfc must vanih in that limiit 'M-.f eneri fori rdf the sei

Eq. (5) is not that of a geometric series ,ince "he spieading factor Hn and the virtual source

location Vn depend on n.

The curvature of die shell is essential to the manifestation of Longitudinal resonqnccs

in the medults of the backscattering form function of fluid spherical shells. ,The specular

reflection form function decomposes into a contribution attributable to the reflection from a

llat vacuum-back!.I tl icd plate and a curvature cocrzction component: i --fp +fcc. The

dependence offrc on kL,h manift'.sts the resonance condition given in Eq. (1). Finally,
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without the inclusion offcc in the synthesis of fp, the approximationf fsp does not

exhibit the longitudinal resonances in If I.

The verification of the geometrical synthesis offsp follows from comparison of

Ifsp I with the exact calculation of the PWS representation of If I. The excellent agreement

between If I and Ifsp I demonstrates the correctness offvp especially forx >;> 0.

Furthermore, the limiting cases of a perfectly soft bubble, fluid sphere, and impedance-

matched fluid shell supports the claim that Eqs. (7) and (8) correctly describe the high-

frequency specular scattering of sound from an ideal, fluid shell.

A synthesis of the backscattering of an elastic stainless steel spherical shell,

summarized in Ref. 11, neglected the curvature correctionfcc since the expression forfcc

was unavailable at the time of that work. The synthesis used the method described in Ref.

6 for the contributions from leaky Lamb waves. It has been subsequently demonstrated

that inclusion offcc improves the synthesis and it is our intent to discuss that in a

subsequent publication since the synthesis of the Lamb wave contributions is beyond the

scope of the present paper.

Though the present analysis has been restricted to backscattering, the ray diagram,

Fig. 1. gives insight into how such rays contribute to the angular scattering pattern for near

backwards directions. The virtual sources V0, V1, V2, ... lie along the backward axis.

Consider first the case of only two such sources. The interference pattern near the axis is

the well known ring or bull's-eye pattern exhibited in an optical Michelson interferometer

or Newton's ring experiment. 2 1,22 The center of the ring pattern is the backwards

direction. This pattern was previously exhibited in a ray synthesis of backscattering from

fluid spheres in cases where only axial ray contributions were included. 13 (See the curves

labeled Ifo 4f2 I in Fig. 5 - 7 of Ref. 13.) The central scattering amplitude is maximized

when the outgoing wavefronts (which are locally spherical but of different radii) have a

0=0
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tangential point of contact on the backward axis. It may be anticipated that the situation

depicted in Fig. 1 yields ring patterns, but with a richer structure due to the additional

virtual sources V2 , V3 .... The method of analysis of the present paper and these

comments on the scattering pattern should also be applicable to understanding the

consequences of multiple reflections in spherical domes which enclose sonar transducers.

While the analysis given here has been limited to spherical shells, Fig. I also

applies to a right circular cylindrical shell. Extension of the analysis to that case should

give the curvature correction to the specular contribution previously modeled by Borovikov

and Veksler.7

"Ibis research was supported by the Office of Naval Research.

Appendix A. Determination of Hn and Cn from geometrical ray methods

The factor H,, is derived by applying the matrix method of geometric optics to the

acoustic ray representation of the wavefield in water and fluid shell. Each factor is

associated with a virtual point source as discussed in Sec. 3.2, (see Fig.1). In particular,

the ray associated with the local outgoing wavefront produced by the point source Vn will

be called the nth ray. The local backscattering angle y is the angle between the nth ray and

the z-axis. The square of the spreading factor in terms of the impact parumeter s and y'n is23

2 [-d 1 d-
t. in Yn

where [do / d(fj, is the spreading factor part of a differential scattering cross section for the

nth ray. This is a specialization to y --4 0 of the more general resuli (d./dý2) =- s(sin7)-

llds/d1 derivable from flux conservation. 24 The purpose of this appendix is to outline the
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method used to relate the impact parameter to the local backscattering angle and, ultimately,

to obtain a simple analytic expression for Hn.

The matrix methods of geometric optics are employed to related s and yn.2 1,22

Since the concern here is backscattering, then the paraxial form of the matrix representation

can be used. The conventions as outlined in Refs. 21 and 22 and summarized below are

adopted for the following discussion. The relevant matrices are:

s)[§, Xn =(1n, R, =[ ( }) T1=[(l 3), (A2)

where X is the matrix defining the initial angle of inclination and displacement frnm the z-

axis of the incident ray at point B in Fig. 1. The final angle of inclination Yn and

displacement xn of the nth ray are represented by X,. In the paraxial approximation, x,, is

the ray displacement from the z-axis in the vertical plane through vertex S. The matrix X.

applies to the point where the ray exits the shell. The refraction and translation matrices are

Ri and T21, The subscript i = 1, 2 corresponds to the surface r = a, b. For paraxial rays

T21 = T 12 and h = a(] - b/a)IML where ML = c/eL is the relative index of refraction.

Noting that a prime on Ri indicates a reflection at the surface i, the relevant constants are:

ML-2ML !-2b -2
P1 a ' 2- b' 1 , (A3)

where PO represents the special case of the zeroth ray. The P are referred to as the

refractive powers of the ith surface. The trajectory of the nth ray is described by the matrix

equations,

Xo RoX (n = 0),0(n 0'(A4)
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where J = R1 T1 2R2T 2 1R1 and M = R 1RIR11 . The exponent in Eq. (A4) implies a

repeated product, i.e., JMJM for n = 3. Performing the matrix multiplications leads to the

result,

Xn = =Y ((2/a(1 +n)s) (n > 0), (A5)

where

B= 1-b/a - h (A6)
ML(b/a) b

Equation (A5) contains the desired relationship between s and Yn. The analytic form of the

spreading factor, determined by using Eqs. (Al) and (A5), gives

H = (a,/2) (n = 0, 1,...). (A7)n 1+nB'

From inspection of Fig. 1, in the paraxial approximation the distance of the virtual source

Vn from 0 is a - (xn/yn). From Eqs. (A5) and (A7), we find that a - (XWYn) -Hn. Hence,

Vn -4 0 as n -4 oo.

The ariplitude factor CG, in Eq. (3) is found by considering the partial reflection

and/or transmission of a ray at each interface. From Fig. 1, it is observed that the zeroth

ray is partially reflected at r = a without further interaction with an interface. The

appropriate constant is CO = r, where r is the reflection coefficient defined in Eq. (4). The

ray ABDEF has the amplitude factor C1 = tr2f'. The transmission coefficients t and t' are

for rays which propagate from water into the fluid and from the fluid into water,

respectively. The transmission coefficients are related to the reflection coefficient in Eq. (4)

by t = I - rand t' = 1 + r. The reflection coefficient at the inner surface at r = b is r2 = -1.

Using these relationships gives C1 = -(I - r2). The amplitude constant for the ray
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ABDEGHI is C2 = tr2 rýr2t where r' = - is the reflection coefficient for the ray incident in

the fluid on the fluid-water interface. The constant C2 in terms of ris C2 =-r(J - r2). In

general, the amplitude constant for the nth ray is

Cn -rn(1 - r2) (A8)

Appendix B. The partial wave series representation of f

The PWS representation of the backscattered form function is included for

completeness. This PWS is for the backscattering of an acoustic plane wave from an ideal

fluid spherical shell. The interior of the shell is assumed to be a vacuum. The analysis is

similar to those in Refs. 3 and 19 and givesf as

2 • Bn(x)f =1--_ (1)n (2n + 1) Dn(x) ,(B 1)

n=O 1 Dri(X) (in=0

where Bn and Dn are 3 x 3 determinants obtained from the boundary conditions at r = a and

b. In Appendix B, n denotes the partial-wave index. The elements of the determinants are:

blI = p (c/cL) in(x), dlI = -0 (c/cL) h W(x),

b d (1)'
21 = jn(x), d2 = -hn (x),

b = d31 0, b 12 d12 =jn(xL),

b13 =d 13 = nn(xL), 22 = 22 j'
23 23 = nn(xL), b32 =32 n(YL)

b33 =d 3 3 = nn(YL),

where the parameters are defined as follows: P = P/Pc, x = ka, XL = xc/cL and YL xLb/a.

The spherical Bessel and Neumann functions and Hankel function of the fii,;t kind of
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integer order are denoted by in, nn, and h/, respectively. The prime on a function indicates

differentiation with rtspect to the argument.

The numerical implementation of the PWS requires that the infinite series must be

truncated. A discussion of a choice of the maximum partial-wave index for the truncated

series is given in Ref. 25. The result is

nm=2 [ x + 4.Cx/I, x < 8, (B2)

nmax = 3 + [x + 4.05x.1r x Ž 8,

where [ implies truncation to the nearest integer. The criterion of Eq. (B2) was used for

the PWS computations shown in Figs. 2 - 4. The number of terms exceeds x and the PWS

converges slowly until n > x.

Appen-lix C. Rapid summation technique for fcc

Since an analytic expression is unavailable at this time forfcc, then the infinite series

in E&. (8b) must be evaluated. For the material parameters given in Table I, the infinite

snries conw-siges fairly fast, but for other values the series may not converge rapidly. Here,

we investigate a method that may increase the convergence offcc = 9ce-i2x where

(1 - r2 ) 0 nBrnein(r" --. ,1 +nB '(C1)
n=l

or at least give a good approximation for the infinite sum. First, it is noted that there exists

an integer n = N such that NB > 1 for any B. Now, the summation in Eq. (Cl) is split into

two summations,

S = G(N) + l nBre ' (C2)
1+nnB

n=N+1
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where S denotes the sum in Eq. (Cl) and G(N) is the finite sum of the first N terms.

Shifting the summation index in the second term of Eq. (C2) and dividing the numerator

and denominator by (n + N)B, this sum is rewritten as

0 nBrnein-rNe iNa 0n rneina (C3)
1~ 1 + n B- I- -1

n-N+l n = I I + [(n + N)B]

Since [(n + N)B]-1 < 1, then the denominator may be expanded by the binomial expansion.

Neglecting terms of order [(n + N)B]-2 , the summation on the right hand side of Eq. (C3)

is approximated by two infinite series. The first is a geometric series and can be summed

analytically; while the second is the first correction to the rapid summation technique.

Equation (C2) becomes

N+I e(N+)• Nirnei
S = G(N) + -r eiNa y" (neN) (C4)1-ria 4-d (n + N)B

lrel n=1I

Finally, the rapid summation technique consists of approximating S by the first two terms

in Eq. (C4). An estimate of the error in implementing the rapid summation technique can

be ascertained by summing the last term in Eq. (C4).

Numerical rests of the above techninue indicate that suitable converges occurs for

the choice ofN = (B- 1) + 10 where { implies the integer part of B- 1. (IfB-1 - (B-1 ) >

0.5, then () is increased by one.) For example, for a fluid shell with the parameters of

440c stainless steel and b/a = 0.838, the constant B = 0.765 which gives {B-1 } = 1.

Hence, the rapid summation technique involves the calculation of 12 terms; while directly

summing S requires between 215 to 220 terms for convergence to six decimal places of

precision. Figure CI is a comparison of the results of the rapid summation technique and

the truncated infinite series. Agreement between the two curves is good and it is anticipated

that a small increase in N will give even better agreement.
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Fig. CI Calculation of Ifcc I employing a rapid summation technique. The rapid

summation of Ifcc I is the solid line. The dashed curve is Ifcc I where the infinite series in

Eq. (CI) is truncated after sufficient convergence.
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Chapter 4

Ray synthesis of the form function for backscattering from an elastic

spherical shell: Leaky Lamb waves and longitudinal resonances.

Abstract

An acoustic ray analysis is employed in synthesizing the form function for

backscattering,f(0 = nt, ka), from a fluid-loaded evacuated elastic spherical shell where k is

the wavenumber of the incident plane wave and a is the outer radius of the shell. The

synthesis contains a component associated with a specular reflectionjsp, and contributions

from leaky Lamb waves. The contributionfl of the ith leaky Lamb wave is expressible in a

Fabry-Perot resonator form [P. L. Marston, J. Acoust. Soc. Am. 83, 25 - 37, (1988)].

The present synthesis differs from previous results by including the effects of longitudinal

resonances onfsp. A novel ray synthesis offsp indicates a significant resonance effect near

the condition kLh = nir (n = 1, 2, ...). The thickness of the shell is h and kL = o)/CL is the

longitudinal wavenumber where CL is the longitudinal speed of sound in the elastic

material. The ray synthesis demonstrates that the curvature of the shell is essential to the

modeling of longitudinal resonances. A comparison of the ray synthesis forf(ka) with the

exact partial-wave series representation for a 440c stainless steel shell displays the

usefulness of the ray synthesis. Although acoustic ray modeling is generally a high-

frequency technique, the ray synthesis off(ka) for a 440c stainless steel shell appears to be

applicable for ka as small as 7. Certain anomalies in the synthesis are investigated to better

understand the limitations of the present ray model.
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4.1 Introduction

The application of novel ray techniques to canonical scattering problems allows one

to test the integrity and efficiency of ray representations.14 Since ray representations of the

interaction of sound with a scatterer give a simple picture of the scattering process, they

merit investigation. Ray representations have the potential to be generalized to non-

canonical problems not easily treated by other methods. Furthermore, the need for

generalized ray theories has been recognized in structural acoustics. 5 In developing such

ray techniques, comparison of an available exact solution and a ray model for a canonical

problem gives physical insight into regions where the techniques are applicable. This

article investigates a novel ray synthesis of the canonical problem of high-frequency

backscattering from a fluid-loaded evacuated elastic spherical shell. It is anticipated that the

ray synthesis developed here may be generalized to scattering from other smooth convex

elastic objects. Hence, both the success and failure of the present level of ray synthesis

may be instructive for more advanced ray models.

The ray synthesis is based on the application of the principles of the generalized

geometric theory of diffraction. 1,6-8 It has been proposed and demonstrated that for

sufficiently high frequencies, the steady-state form functionf for backscattering from

elastic spheres can be partitioned into three distinct components. These contributions are an

ordinary specular reflection, transmitted bulk waves, and surface guided elastic waves. In

the development of a ray synthesis off for an elastic shell, the ordinary specular reflection

and transmitted bulk wave contributions are grouped to form a generalized specular

reflection component denoted byfsp. The present ray synthesis of fTp differs from a

previous ray rmodel 9-11 by introducing a curvature coirection,fcc. Inclusion offce in the

synthesis shows thatfsp can be significantly affected near longitudinal resonances within

the shell. The conditions for ex-itation of longitudinal resonances are
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k Lh = nm, (n =1,2 . , (la)

kLh = (n + 1/2)7c, (n = 0, 1, .,(lb)

where h = (a - b) is the thickness of the shell. Equation (la) corresponds to the usual case

(the one considered here) where the acoustic impedance of the elastic material PeCL is

greater than the impedance of the surrounding water pc. When PeCL is less than pc then

Eq. (1 b) is the appropriate condition. These resonance conditions are obtained from the

requirement of constructive interference of consecutive internally reflected rays upon

transmission back into the water. Finally, for high-frequency scattering from the elastic

shell considered here, the relevant surface guided elastic waves are leaky Lamb waves.

The steady-state scattered pressure in the farfield from an evacuated elastic spherical

shell has the form 12

Ps = P0 -e-r, (2)

where P0 is the pressure amplitude of the incident acoustic plane wave. The wavenumber k

of the incident plane wave is defined by k = wo/c where o) is the angular frequency and c is

the speed of sound in water. The harmonic time dependence exp(-iot) has been

suppressed. The outer radius of the spherical shell is a and r is the distance from the center

of the shell to some distant observation point. The complex scattering amplitude or form

function in the backscattered direction has the exact partial-wave series representation 12

f 2 1 (4)n(2n +1) Bn(x)Af =-• 0-)~n+1 Dn(x--• (3)

n=0

where x = ka = 2ra/9A and X is the wavelength of the incident plane wave. The functions

Bn(x) and Dn(x) are 5 x 5 determinants obtained by satisfying the appropriate boundary

conditions. 12 The elements of these determinants, which are complicated expressions of

spherical Bessel functions and spherical Hankel functions of the first kind, are listed in
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Ref. 12. The material parameters for thie elastic shell are the longitudinal sound speed cL,

the shear or transverse sound speed cs and the density Pe while the density of water is

denoted by p.

The organization of this article is as follows. In Sec. 4.2.A, the ray synthesis of an

individual leaky Lamb wave contribution,f/, to the form function for backscattering is

developed. The expression forfl is cast in a form analogous to a Fabry-Perot resonator.

Section 4.2.B summarizes a ray synthesis offsp and demonstrates thatfsp can be separated

into a term associated with reflection frnm a vacuum-backed flat elastic plate and a

curvature dependent correction. Using parameters corresponfing to a 440c stainless steel

shell studied in Ref. 12, the results of the ray synthesis and exact partial-wave series are

compared in Secs. 4.3 and 4.4. Since a longitudinal resonance does not significantly affect

the ranges 0 < x < 60 and 80 < x < 100, the computations in Sec. 4.3 consider these

regions. The presence of a longitudinal resonance in the range 60 < x < 80 complicates the

analysis and this region is investigated in more detail in Sec.4.4. A general discussion and

concluding remarks are contained in section 4.5. Appendix A contains a discussion of the

radiation damping parameter and normalized phase velocity for each leaky Lamb wave

contribution. These leaky Lamb wave parameters are essential to the ray synthesis

calculations and are included for completeness. The first antisymmetric and symmetric

leaky Lamb wave contributions are isolated in Appendix B. The Fabry-Perot form offl is

investigated and a discussion of off-resonance contributions from a Lamb wave to the form

function for backscattering is presented. Finally, Appendix C studies a peak near x = 71 in

the ray synthesis off which is not contained in the exact partial-wave series result. The

discussion in Appendix C is based in part on a localization principle analysis of ir-lividual

partial waves similar to that used by van de Hulst for light scattering. 13
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4.2. Ray synthesis of the form function for backscattering

A. Leaky Lamb wave contributions

The methodology of the generalized geometrical theory of diffraction1, 7 is applied

to the backscattering of a plane wave from a hollow elastic spherical shell. For the

canonical problem of high-frequency scattering from elastic shells, leaky Lamb waves are

the relevant surface guided elastic waves which produce the resonance structure observed

in the form function for backscattering. (In Sec. 4.3 below, it is demonstrated that the ray

synthesis works well down to x = 7 for the particular shell considered. For smaller x the

contributions of subsonic14 Lamb and Franz-type waves may be significant.) The ray

diagram in Fig. 1 provides a fundamental illustration of the ray synthesis offi. This

diagram is similar to those discussed in Refs. 1, 6, 12, and 15. The diagram represents an

elastic spherical shell of outer radius a and inner radius b situated such that the shell's

center C coincides with the origin of the coordinate axis. A plane wave propagates in the

positive z-direction along the ray AB in Fig. 1. At point B the acoustic wavefield in water

couples to the shell and launches a leaky Lamb wave. The Lamb wave is guided by the

shell along the arc BB' continuously re-radiating energy into the water. At B', the radiated

energy is backscattered along the ray BA'. (Physically, B and B' actually locate surface

regions where the interaction takes place. The width of the regions correspond to the size

of Fresnel zones. 16) The leaky Lamb wave repeatedly circumnavigates the shell radiating

energy in the backscattering direction with each circumnavigation. The points B and B' are

obtained from the phase velocity trace-matching condition,1, 12

01 = arcsin(c/c1), cI > c, (4)

where 01 is the local angle of incidence and cl is the phase velocity of the leaky Lamb wave.

The phase velocity is taken to be the phase velocity of the leaky Lamb wave along the outer

surface of the shell 17 and is assumed to be supersonic.
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Fig. 1 A ray diagram for a contribution from a leaky Lamb wave to the form function

for backscattering from -in elastic spherical shell of outer radius a and inner radius b. A

plane wave represented by the ray AB couples to shell at B launching a leaky Lamb wave.

The Lamb wave is guided by the shell through a polar caustic at C" to B'. At B' the

radiated energy is shed in the backscattered direction along the ray B'A'. The points B and

B' are determined from Eq. (4) where 01 is the local angle of incidence. The Lamb wave

continues to circumnavigate the shell shedding some energy at B' with each passage. The

point C' is the specular point and the location of a second polar caustic. For backwards

and near backwards scattering the rays BA' and DFI appear to diverge from a virtual

source located at point Fl. When the diagram is rotated about C'C, the point Fj traces out a

virtual ring-like source. The vertical line through C' represents an exit plane for an

outgoing toroidal wavefront associated with the ring-like source.
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The form of an individual leaky wave contribution to the backscattering amplitude is

obtained by summing the backscattering amplitudes for each circumnavigation, 1,7

--G e M, e2(n - 0A )l i e e=mC e-2 =m0,t i2rnmxc/cl(
f1 = "2e:t (5)

m=0

The geometrical phase shift Ti1 = [2x(c/c))(It - O0) - 2xcos(Oi) - x/2] accounts for the phase

difference between a Lamb wave propagating along the arc BB' and a wave in water

propagating from C' to C and back to C' as if the shell were not present. The 7r/2 term in

Tl/ is associated with the propagation of the leaky Lamb wave through the polar caustic at

C". The additional phase shift, 2nxc/ci, is attributable to repeated circumnavigation of the

leaky Lamb wave about the shell. The n phase shift results from the polar caustics at C'

and C". The radiation damping of the leaky Lamb wave is characterized by the radiation

damping parameter Pl with units of Np/rad. The factor exp[-2(ir - O0 )01f] is the radiation

damping of the partial circumnavigation of the Lamb wave along BB'; while exp(-27r~j)

accounts for the additional radiation damping due to repeated circumnavigation. The

efficiency of the coupling between the wavefield in water and the leaky Lamb wave at the

points B and B' is characterized by a complex coupling coefficient G1. Inspection of the

summation in Eq. (5) shows that it is a geometric series and Eq. (5) reduces to
• Ol)t -271•l i27txc/c1

ft = [ "Gle Tlte 2(n - / I[1 + e ]. (6)

The form of the denominator in Eq. (6) is that of a Fabry-Perot resonator. 1,7 Appendix B

contains a discussion of Ifi I for the lowest antisymmetric and symmetric leaky Lamb

waves. Finally, Eq. (6) is the ray synthesis of the contribution of an individual leaky Lamb

wave to the form function for backscattering.

Williams and Marston6 applied the Sornmerfeld-Watson transformation to the

partial-wave series representation off for backscattering from a solid elastic sphere. From
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their analysis a complicated expression for the complex coupling coefficient GI was

obtained (see Eq. (28) of Ref. 6). Subsequently, Marston1 developed an approximation

for GI which gives explicit dependence of I GI I on the leaky Lamb wave parameters 01 and

cdc. The approximation can be expressed as

G1 = 84 13(c/cd)ei, (7)

where 01 denotes the phase of G1 and it may be argued that 1 =- 0 for elastic spheres or

shells. 11,18 For the computations of the ray synthesis of If I in Sees. 4.3 and 4.4, 01 for

the Ith leaky Lamb wave is taken to be identically equal to zero. Equation (7) was

employed in the modeling of backwards and near backwards scattering of short tone bursts

from a 440c stainless steel shell in experiments discussed in Ref. 12. Further confirmation

of the applicability of Eq. (7) to the backscattering from elastic spherical shells is

demonstrated below in Secs. 4.3 and 4.4. An alternative derivation of Eq. (7) with 01 = 0

has been given for a thin fluid-loaded spherical shell.2

Consider again the ray diagram in Fig. 1. For an observation point on the negative

z-axis a finite distance from C, the ray that reaches the observation point is DFl not ray

B'A'. It can be argued that the appropriate modifications to the ray synthesis offl are

negligible provided the observation point is sufficiently distant.1 The intersection of rays

B A' and DFl at the point Fj locates a virtual source. The point F is situated in the vertical

plane perpendicular to the z-axis through the point C. 19 From the symmetry of the shell, it

is apparent that the virtual source is ring-like and has a radius bj = a sin(Oi). Hence, the

backwards and near backwards contribution of a leaky Lamb wave may be modeled by a

virtual ring-like source. The local outgoing wavefront in the vertical plane through point C'

from a ring-like source has a toroidad shape. A toroidal wavefront is associated with the

phenomena of axial focusing or glory scattering. 15,19-22 Axial focusing of the
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backscattering from solid elastic spheres 19 ,20 and elastic spherical shells 12 has been

observed.

B. Specular reflection contribution

The specular reflection contributionfsp in the form function for backscattering

from an evacuated elastic spherical shell can be approximated by ray methods. Figure 2

shows a simplified ray diagram which facilitates the ray synthesis. The diagram is similar

to the one discussed in Ref. 23. The orientation of the shell with respect to the incident

plane wave is the same as in Fig. I where the points S and 0 in Fig. 2 correspond to C'

and C in Fig. 1, respectively. The specular reflection appears to originate at S and is often

referred to as the specular point.24 The incident rays which significantly affectfsp lie close

to the z-axis. Consider the incident ray AB in Fig. 2 with infinitesimal impact parameter s.

Rotation of the figure about the line SO generates all the incident rays with impact

parameter s. At point B the ray is partially reflected back into the water and partially

transmitted into the elastic shell. The intersection of the reflected ray BC with the axis SO

at 1V0 defines the location of a virtual source. For backwards and near backwards

scattering, spherical aberration may be neglected and the virtual source can be described as

a point source. Since the impact parameter s is assumed small, then the angle between the

iacident ray and the outward unit normal at point B is infinitesimal. Hence,the ray AB is

approximately at normal incidence with the shell and the energy transmitted into the shell

will produce a (bulk) longitudinal wave. To simplify the ray synthesis, the weak mode

conversion between a longitudinal wave and a transverse (shear) wave upon reflection at a

surface is neglected since the angle of incidence is infinitesimal. The transmitted ray at B is

refracted and propagates along BD. At D (again neglecting mode conversion), total internal

reflection occurs and the longitudinal wave propagates along DE. The ray is again partially

reflected and transmitted at E. Projection of the transmitted ray after refraction at E back to



101

FI

A B D

S ..

SVo VIV 2  0

Fig. 2 The ray diagram for the specular reflection from an evacuated elastic spherical

shell of outer radius a and inner radius b. The point S is the vertex of the refracting surface

and 0 is the origin of a coordinate axis located at the center of the shell. The ray AB

infinitesimally close to the z-axis is incident on the shell with impact parameter s. The ray

ABC is the ordinary specular ray; while ABDEF and ABDEGHI are the first two internal

specular reflection contributions. At r = b, the rays are totally reflected and the rays are

partially reflected and/or transmitted at the water-shell interface. Intersection of the

projection (dashed lines) of the outgoing rays and the z-axis define locations of virtual point

sources, Vn, which describe local curvature of the wavefront associated with each ray. The

specular reflection contribution to the fonrm function for backscattering is determined from a

superposition of the wavefields from the virtual sources.
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the z-axis gives the location of a second virtual point source V1. By continuing to trace •he

ray trajectories of the higher internal reflections an infinite set of virtual point source

locations Vn on the z-axis can be generated.

Each virtual point source Vn describes the propagation of a local outgoing

wavefront associated with the nth ray. In the limit s -4 0, the specular reflection

contribution to the farfield pressure is a superposition of the acoustic wavefields from the

virtual point sources,

PsP eik =e'2x HnCne Lh (8)rs ( 0 n = 0 1

where kL, = o/]cL. The 2.x phase shift accounts for the path length difference between a ray

propagating in water from S to 0 and back to S and a ray which is backscattered at S. The

additional phase delay within the summation comes from a longitudinal wave which

reverberates n times within the shell before being transmitted in the backscattered direction.

The amplitude of the nth virtual point source is HnCn where Hn, represents a geometric

divergence factor and Cn accounts for the cumulative effects of partial reflection and/or

transmission. By applying an acoustic ray analysis of longitudinal resonances within a

fluid shell the following expressions for Hn. and C., were obtained23

_ (a/2)
1 + nB' (9)

and
C0 r

Cn -rn-l (1 - r2), (n > 0), (10)

where B = (cLh/cb) and r = [pecL - PC]/[PeCL + pc]. The constant B depends on only the

normalized longitudinal sound speed of the elastic material and the radii of curvature of the



103

inner and outer surfaces. The reflection coefficient for the scattering of an acoustic plane

wave at normal incidence from an interface between water and an elastic half-space is r.

After substitution of Eqs. (9) and (10) into Eq. (8), comparison with Eq. (2) gives

an expression forfsp which depends on the geometric and material parameters of the shell,

Sr2 ri2kLh
fsp = r- 7 1-+ nB e-x"()

nfl1

Although Eq. (11) is a ray synthesis of the contribution of the specular reflection to the
form function for backscattering, it can be manipulated such that each resulting term has a

simple physical interpretation. With the replacement of [1+nB]-1 by 1 - nB[l+nBI t , the

summation in Eq. (11) can be split into two summations. The first summation, via a-e-eri seis h a the a .yi for .. ... .- -.. - . .

gelnieric Senes, hias the analytic foriu re;p(izkLn)tl-reip(02kLh)] ". reanc•,jsp ubcumcs

f = R -i2x +fc, (12)

where

-(1 - r2 )eL 
(13)

Sr- rei 2kLh '

and

(1f - ir2) nr) e-i2x. (14)

cc=(rTr I + erB

Definefp = Rexp(-i2x) where Ris the complex reflection coefficien. associated with the

scattering of a normal incidence plane wave from a vacuum-backed flat elastic plate of

thickness h.25,26 Hence,fp describes the reflection f•rm an elastic spherical shell where

the complex reflectivity is mcdeicd as that f., r a flat elastic plate. Consequently, the
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influence of the curvature of the shell onfvp within the paraxial approximation must be

contained in Eq. (14). At present a simple analytic expression forfcc is unavailable, but a

rapid summation technique has been described and implemented in Appendix C of Ref. 23.

Figure 3 demonstrates the importance offcc to the ray synthesis of Ifsp I. The

material and geometric parameters used in the computation correspond to the parameters of

a 440c stainless steel shell studied in Ref. 12. The values of these parameters are as

follow: cL = 5.854 km/s, cs = 3.150 km/s, Pe = 7.84 g/cm3 and b/a = 0.838 for the elastic

shell; c = 1.479 km/s and p = 1.00 g/cm3 for water. The resonance condition given in Eq.

(la) predicts that the a longitudinal resonance should occur at xLR = 76.8. Clearly, the

minimum observed in Fig. 3 at x ý- 77 is a manifestation of this longitudinal resonance. It

is noted that the approximationfsp -fp is not sufficient to produce the observed minimum.

It is relatively simple to demonstrate that Ifp I = 1 for all x. The importance offcc in the

synthesis of If I for a 440c stainless steel shell will be examined in more detailed below in

Sec. 4.4. Hence, the curvature of the shell appears to be intimately related to the presence

of a longitudinal resonance in the specular contribution to the form function for

backscattering.

4.3. Comparison of the ray synthesis and exact calculation of I f I for x

outside the region of a longitudinal resonance

To facilitate a discussion of a comparison between the ray synthesis and the exact

partial-wave series computation of If 1, the range 0 < x < 100 is split into five intervals. By

displaying these smaller regions, the finer details of the high Q resonance structure caused

by some of the leaky Lamb wave contributions are more easily resolved. The range 60 < x

< 80 is examined in more detail in Sec. 4.4 because the presence of a longitudinal
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Fig. 3 The modulus of speclar reflectionfsp from an elastic spherical shell as defined

by Eqs. (12) - (14). The broad minimum at x = 77 is a manifestation of a longitudinal

resonance. The resonance condition in Eq. (la) predicts a longitudinai resonance occurs at

XLR = 76.8. As discussed in 4.2.B, if the curvature correction coniponentfcc were omitted

in Eq. (12), then Ifsp I = Ifp I = 1 for all x.
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resonance obfuscates the cause of certain resonance features. In the calculations below,

unless otherwise stated, the ray synthesis is

ray sP I P cc (15)

1 I

where the summation in Eq. (15) is over the possible leaky Lamb wave contributions. The

material of the elastic shell is 440c stairiless steel with the parameters listed above in Sec.

4.2.B.

The computation of the partial-wave series for the form function for backscattering

requires the truncation of the infinite summation in Eq. (3). The minimum number of terms

(or maximum partial-wave index) nmax retained for sufficient convergence offPws exceeds

x. The following criterion was tested and determined to ensure adequate convergence of

the series for the shell considered:

nmax = 2 + [ x + 4.0x'/ 3 ], x < 8,

nmax = 3 + [ x + 4.05x/3], x >_ 8, (16)

where the square brackets imply truncation to the nearest integer. For very thin shells

caution in the use of Eq. (16) for determining nmax may be required since subsonic guided

wave contributions can be significant. From the localization principle subsonic guided

waves are associated with partial waves having n > x. Discussions concerning the choice

of Eq. (16) are contained in Refs. 15 and 23. Secondly, to ensure adequate resolution of

the high Q resonance structure, the increment Ax needs to be small, For the computations

of I fpws I shown below Ax = 0.01 except in the vicinity of the very narrow resonance

structure caused by the so leaky Lamb wave (see Appendix B). Near these resonances, it

was necessary to take steps in Ax as small as 0.00001. Hence, it is evident from Eq. (16)

and the small size of Ax that the partial-wave representation off in high-frequency

backscattering ca!culations can be numerically intensive.
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The relevant leaky Lamb waves are analogous to Lamb waves that can be excited on

a flat elastic plate of thickness h in vacuum.27 ,28 Using the terminology associated with the

flat plate results, the leaky Lamb waves excited on the shell for 0 < x < 100 are designated

ao and al for antisymmetric or flexural Lamb waves and so, Si, and S2 for symmetric or

dilatational Lamb waves. As the frequency increases, higher Lamb wave resonanccs can

couple with the acoustic wavefield in water and these higher modes can easily be included

in the synthesis. The computation of Eq. (15) requires the parameters Pl(X) and ci(x)/c for

the ith leaky Lamb wave. These parameters can be determined by extending certain results

of the Sommerfeld-Watson transfomation analysis of the backscattering from a solid

elastic sphere. 6,7 The pertinent results from this analysis are sunrmnarized in Appendix A

and [l(x) and ci(x)/c for the Ith leaky Lamb wave are examined. The values of Pj(x) and

cl(x)lc depicted in Figs. Al and A2 are employed in the present calculations. Finally, Eqs.

(6) and (12) - (14) are the expressions necessary for the calculation of Ifray 1.

Figure 4 displays the comparison of I fpWS I and I fray I where the dashed curve

corresponds to the exact partial-wave representation and the solid line is the ray synthesis

result. In the interval 0 < x < 20, Fig. 4a, the shell can support both the ao and so leaky

Lamb waves. The ray synthesis, Eq. (15), is truncated at x = 7 since the phase velocity for

the ao leaky Lamb wave becomes subsonic. From inspection of Eq. (4), the present ray

synthesis is implicitly a supersonic theory. Comparing Figs. 4a, B 1, and B2 demonstrates

that the broad resonance structure is attributable to the c,, mode; while the so Lamb wave is

responsible for the sharp (high Q) resonance features at x = 10, 14, and 18. It is

noteworthy that the high-frequency ray synthesis gives fairly good agreement even though

x is not very large. To accurately model the exact Ifpws I for x < 7, both the subsonic

portion of the ao Lamb wave and Franz-type (creeping) waves would need to be

considered. Figure 4b shows the range 20 < x < 40 where the relevant leaky Lamb wave
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contributions are ao and so. Again, the broad resonance structure is due to ao and the sharp

features are associated with the so Lamb wave. The agreement between the synthesis and

exact solution is excellent. Finally, Fig. 4c compares IfPws I and 1fray I where the next

possible leaky Lamb wave can contribute to the backscattering. This new contribution is

the al leaky Lamb wave which appears to have a cutoff frequency near x = 41. Inclusion

of the ao, so, and al leaky Lamb waves not only reproduces all the resonance features, but

the agreement between the ray synthesis and the exact partial-wave series representation is

excellent.

The range 80 < x < 100 is shown in Fig.5. The relevant contributions to the ray

synthesis contained in Fig. 5a are ao, al, so, and sl as well as the specular reflection.

Although the ray synthesis seems to reproduce the resonance features in Ifpws I, some

differences are evident. For x > 83 the ray synthesis can be improved by acluding the s2

leaky Lamb wave which appears to have a cutoff frequency near x = 83. By including the

s2 leaky Lamb wave contribution in the synthesis of Fig. 5b, the exact result is modeled

more accurately by !fray I particularly forx > 88. The difference between I' fray and ifPws I

for x < 85 might be associated with a longitudinal resonance discussed in Sec. 4.4. The

broad minimum in the specular reflection contribution shown in Fig. 3 caused by a

longitudinal resonance at xLR = 76.8 may significantly affect the form function for x < 85.

Inspection of Fig. 5 demonstrates, however, that the geometric ray synthesis contains the

resonance structure caused by various leaky Lamb wave contributions.

4.4. Form function in the vicinity of a longitudinal resonance.

The resonance structure in IfPws I for the interval 60 < x < 80 is perhaps the

most difficult region to interpret physically. Within this range, a longitudinal resonance can

be
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Fig. 4 The dashed line is the exact partial-wave representation, ifpws i, and the solid

line is the ray synthesis, Ifray I for the stainless steel shell considered with b/a = 0.838.

The pertinent leaky Lamb waves included in each synthesis are: (a) ao and so; (b) ao and

so; (c) a0, so, and al. In (a) the ray synthesis is truncated below x = 7 since a0 becomes

subsonic and the ray synthesis is implicitly a supersonic theory. The agreement between

the high-frequency ray synthesis and the exact results indicate that the ray synthesis may be

useful for non-canonical scattering problems.
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Fig. 5 The exact Ifpws I and I fray I are the dashed and solid curves, respectively. In

(a) the relevant leaky Lamb wave contributions are: ao, a,, so, and Si; while in (b) the

leaky Lamb waves are: ao, al, so, s1, and s2. The specular reflection employed in I fray I is

given by Eqs. (12) - (14). The importance of these figures is that the ray synthesis

accurately models the resonance st'ucture in the exact result and the inclusion of the S2

leaky Lamb wave in (b) improves the synthesis.
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supported by the elastic shell. From Eq. (la), the longitudinal resonance is predicted to

occur at xllR = 76.8. It is observed in Fig. 3 that the longitudinal resonance can affect a

relatively broad range of x in the vicinity of xLR. Also, within this region of x the 440c

stainless steel shell can support the ao, al, so, and sl leaky Lamb waves. Of these Lamb

waves, the physical nature of the sl Lamb wave contribution to Ifray I becomes difficult to

understand. The sI Lamb wave on a 440c stainless steel flat plate of thickness h in vacuum

has a cutoff frequency corresponding to29 x -- 76.8, but the dispersion curve in Fig. A2 for

Sl does not demonstrate an abrupt cutoff. (The dispersion curve near a cutoff should be

particularly sensitive to the fluid loading.) Furthermore, the group velocity for the si leaky

Lamb wave becomes negative for x < 71 (see Appendix A). As discussed below, the

presence of a longitudinal resonance and the behavior of the sI leaky Lamb wave for x <7 i

obfuscates a physical interpretation of the scattering process.

Figure 6a compares Ifpws I and 1fray I where the curvature correctionfcc is omitted

in Eq. (15). The ray synthesis works well forx < 70, but forx > 70 the synthesis fails to

model the exact result. In particular, in the vicinity of x = 76.8 the ray synmiesis gives a

completely erroneous representation of the form function for backscattering. However, it

is evident from Fig. 6a that the positions of the sharp resonance features caused by the

presence of leaky Lamb waves seem to be correctly predicted. Figure 6b compares I fray I

and lfpws I, but fcc is now included in the synthesis. It i:. immediately evident that the

inclusion of the curvature correction improves the synthesis. Although I fray I does not fully

replicate I ftws I, Fig. 6b indicates that the contribution from a longitudinal resonance (as

presently modeled) is an important contribution in the texact result. Furthermore, the ray

method employed in determining an expression forfsp necessarily includes the influence of

the shell's curvature explicitly infcc.

An examination of the absolute error may give some insight into the cause of the
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Fig. 6 The relevant leaky Lamb wave contributions are ao, al, so, and sl. In (a) the

curvature correctionfcc is omitted in Eq. (15). The agreement between Ifray I (solid line)

and Ifpws I (dashed line) is good for x < 70, but tfray I fails to model IfPwS I forx > 70.

Inclusion off,, in Ifray I in (b) replicates lfpws I forx < 70 and x > 74, but the agreement

above x = 74 is marginal. At present, the cause of the anomaly in Ifray I nearx = 71 is not

fully understood (see Secs. 4.4 and 4.5 and Appendix C).
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discrepancy between IfPws I and I fray I near x = 71. A measure of the absolute error in the

ray synthesis is given by Ej = IIPws -fray I, j 1, 2. Figure 7 contains three curves. The

solid lint, is E1 where the curvature correction in Eq. (15) has been omitted. The short-

dashed line is E2 whenfcc is included iilfray. The long-dashed line corresponds to Ifcc I

where Eq. (14) is employed. The reduction in Ej whenfcc is included is given roughly by I

fIc 1. The cause of the peak near x = 76.8 in E1 is due to the omission offcc infray and the

peak near x = 71 must not be related exclusively to a longitudinal resonance.

The identification of specific resonance features associated with the Ith leaky Lamb

wave can be achieved by comparing I I in Figs. B I and B2 with I fPws I in Fig, 6a. The

narrow resonance structure (at x = 62.5, 65.0, 67.5, 69.8, 72.0, 74.2, 76.3, and 78.7) is

a result of the al leaky Lamb wave contribution. The broad structure is a combination of

the ao and so leaky Lamb waves. Since the widths of the ao and so resonances are fairly

broad, it is difficult to unambiguously identify a feature in Ifpws I with either Lamb wave.

However, it is apparent from the magnitude of each contribution that neither the ao nor the

so leaky Lamb wave is responsible for the significant difference between I fray I and I fpws I

nearx = 71. The final contribution to the ray synthesis is the si leaky Lamb wave. The

Fabrv-Perot representation as developed in Sec. 4.2.A accounts for the partial

circumnavigation and all subsequent circumnavigations of a Lamb wave about the shell.

Furthermore, inspection of Eq. (6) and Fig. A l demonstrates that the large radiation

damping of the sl Lamb wave effectively makes its contribution to Ifray I negligible for x <

72. It is noteworthy that our ray model 15 of the structure in the forward scattering

amplitude (and the total scattering cross via the optical theorem) for the same shell has no

anomalies near either x = 71 or 76.8. Hence, the deficiency in the present model does not

affect the forward scattering.
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Fig. 7 The absolute error between the ray synthesis and the exact partial-wave series is

given by Ej = Ifpws -fray I,] = 1, 2. The solid line is E1 wherefcc in Eq. (15) has been

omitted. The short-dashed line, E2 , includes the effects offcc onffray. For comparison, the

long-dashed line is lfcc I. The inclusion of the curvature correction infray accounts for the

presence of a longitudinal resonance at xLR = 76.8. Furthermore, the longitudinal

resonance is not responsible for the anomaly near x = 71.
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Inspection of Figs. 1 and A2 suggests a possible cause of the anomalous behavior

near x = 71. As x is decreased to XLR = 76.8 and below, cl/c becomes large for the sl

Lamb wave. As noted above, the frequency for which x = xLR corresponds to the cutoff

frequency of the sl mode for the corresponding flat plate in vacuum of the same thickness h

= a - b. Hence, the trace velocity-matching angle 01 becomes small and the sl wave may

radiate nearly backwards directly. This corresponds to the radiation along ray B"A" (with

B and B' shifted closer to C' than illustrated in Fig. 1). Such radiation was not included in

Eq. (15) or elsewhere in the present analysis. It is p'ausible that such rays can contribute to

backscattering even without being backward directed if the rays intercept the Fresnel

volume16 of a backwards directed ray. The essential concept is that rays ill effect occupy a

region of space (the Fresnel volume) and that sound radiated primarily in some direction

(say along B"A") can contribute to the scattering in other directions (e.g., the backwards

axis). Further support for this mechanism is evident from inspection of Fig. Al which

shows that f3l for I = s1 is very large for x in the region of interest. The large 15, indicates

the sl leaky Lamb wave is strongly coupled to the acoustic field near the shell, thus

enhancing the radiation in the general direction of the ray reflected with a local angle of

incidence = 9!-

While the aforementioned mechanism for the anomaly near x = 71 has not been

quantitatively modeled, additional support can be seen by inspection of the group velocity

plotted in Fig. A3 for the I = sI mode of this shell. This mode is seen to have a negative

group velocity for x < 71 when computed by the Watson transform methodology. This

suggests that energy can be radiated back towards the source without circumnavigating the

shell. It can be argued by inspection of Eqs. (39) and (40) of Ref. 1 that the final

approximation for G1, Eq. (7), may break down if cgI is negative. The group velocity

anomaly is further discussed in Appendix A.
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The influence of a longitudinal resonance on the form function has also been seen

for a set of material parameters for an aluminum shell. Figure 8 shows IfPws I and Ifsp I

where the parameters are: CL = 6.42 kWn/s, cs = 3.04 kW/s, Pe = 2.70 g/cm3, c = 1.4825

kW/s, and p = 1.00 g/cm3 . The thickness of the shell is (h/a) = (I - b/a) = 0.04. The solid

line in Fig. 8 is Ifpws I and the dashed line is Ifsp I. From Eq. (la), a longitudinal

resonance is predicted to occur at xLR - 340. Clearly, the dip near x = 340 corresponds to

the presence of the longitudinal resonance. Although, a detailed analysis of the surface

guided elastic wave contributions for the aluminum shell has not been carried out,

presumably the calculated rcsonance structure is a result of leaky Lamb waves. The large

peak near x = 300 may be a manifestation of prompt radiation along path B"A" as noted

above.

4.5 Discussion and conclusion

The canonical problem of the backscattering of an acoustic plane wave from an

elastic spherical shell has been re-examined by novel ray techniques. A form function for

backscattering including leaky Lamb waves and a specular reflection has been developed

and tPsted The Fahrr_,_err-t epvnrpevin in Eq. f(ý )r a leAky L.amh bwave coniibution had

previously been established 9-12 and the subsequent approximation of GI by Eq. (7) had

been verified for backscattering from spheres and shells. 18 The calculations presented here

give further verification of the applicability of Eqs. (6) and (7) in describing leaky Lamb

wave contributions to backscattering. The ray synthesis of the specular reflection is

composed of a component associated with reflection from a flat elastic plate of a normal

incidence plane wave and a novel curvature correction contributionfcc. A comparison of

the partial-wave representation and ray synthesis of the form function in Sec. 4.3

demonstrated regions of x where the exact result and synthesis wcrc in excellent agreement.
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Fig. 8 For an aluminum shell with b/a = 0.96 and cL = 6.42 kmls, Eq. (la) predicts a

longitudinal resonance at XLR - 340. The solid line is the exact IffpWS I and Ifsp I is the

dashed line. The minimum in both IfPws I and Ifsp I at xIS is a manifestation of this

longitudinal resonance.
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It is shown in Sec. 4.4 that inciusion offcc in fray accounted for the resonance structure in

the form function caused by a longitudinal resonance. In Sec. 4.4, a comparison of the

exact and synthesized results illustrated that tbl' present ray model breaks down in a range

of x where the sl leaky Lamb wave was found to have a negative group velocity'. Finally,

although a ray model is a high-frequency approximation, the synthesis displayed here for a

440c stainless steel shell was applicable dowi. to x = 7.

While the inclusion offcc in Eq. (15) (and Fig. 6b) improves the synthesis in the

vicinity ofx x= xLR, it is noteworthy that the use offcc in Eq. (15) tends to increase the

discrepancy between Ifpws I and I fray I for x < 12. Figure 9 compares Ifrws I and I fray I

wherefcc = 0 in Eq. (15). That is, the specular reflection contribution tof is modeled as

the specular reflection from a vacuum-backed flat elastic plate at normal incidence.

Inspection of Figs. 4a and 9 suggests that for x < 12 ,fray withfcc = 0 gives a more

accurate representation of the exact I fpws I. This may be anticipated since the assumptions

used in the modeling offsp asfp +f 5c breakdown for sufficiently low frequencies.

Three improvements to the current ray synthesis which sihould extend the range

of applicability are as follows. First, extension of the ray synthesis to smaller values of x

requires the inclusion of contributions from the subsonic portion of the ao leaky Lamb

wave and Franz-type waves. These were not included in the present model since for

subsonic waves Eq. (4) predicts sin(Or ) > 1. (During the course of this research, a method

for including such contributions for thin shells has been proposed.2) Presumably, these

types of surface guided elastic waves contribute to the structure in If I forx < 7. Second,

improvements in the approximation for the specular contributionfp when x is not large

may be needed. Third, a thorough investigation of the sl leaky Lamb wave behavior in the

vicinity of the anomaly discussed in Sec. 4.4 should be conducted. As suggested in Sec.

4.4, a modified ray picture may be needed in this region. The consequence of a
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Fig. 9 The dashed line is Ifpws I and the solid line is Ifray I for the stainless steel shell.

The leaky Lamb waves included infray are ao and so. The present figure differs from Fig.

4a by settingfcc = 0 in Eq. (15) so that the curvature correction to the reflected wave

amplitude is neglected. Ihe improved agreement over part of this x region between IfPws I

and I fray I is discussed in Sec. 4.5.
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negative group velocity on the Sl contribution needs to be more fully explored as well as

any connection between the first longitudinal resonance and the cutoff of the Sl Lamb wave

for curved fluid loaded shells.

Comments on the significance of the fractional thickness h/a are appropriate. For

the present numerical investigation for the stainless steel shell, we took h/a = 0.162 to

correspond to the shell studied in the scattering experiments in Ref. 12 and subsequent

theoretical studies. 15,17,23 Some of the ,ohanges which may be anticipated for smaller h/a

will now be noted. For flat plates in a vacuum, the cutoff frequencies increase with

decreasing h. While the dispersion relations near cutoffs may be strongly affected by fluid

loading, as a general rule it may be anticipated that for a given frequency, fewer leaky

Lamb modes will be required as h is decreased. The frequency for which cl of the lowest

flexural (or antisymmetric) Lamb mode equals c of the surrounding fluid is commonly

referred to as the "coincidence frequency." (See also comments in Appendix A on the

bifurcation of the ao dispersion curve.) While for the shell considered, coincidence occurs

for x- 7; smaller values of h/a would raise the coincidence frequency. Even away from

cutoff and coincidence frequencies, as h/a is decreased, the effect of the fluid loading on the

phase velocity curves, Fig. A2, will be more pronounced. It may be anticipated that c/c

(as given by the Watson methodology) will be shifted below the plate in-a-vacuum

curvature-corrected values. Finally, the longitudinal resonance condition, Eq. (la), may be

expressed as xLR = nir(cl/c)[h/a]"1. Consequently, for a given n, XLR increases with

decreasing h/a.

While the emphasis of the present research has been on scattering in the exact

backwards direction, the generalization of leaky Lamb wave contributions to near

backwards (but off-axis) directions follows from the discussions of axial focusing given in

Refs. 1, 12, and 19. Insight into the high-frequency near-backwards scattering patterns for
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shells which are only slightly spheroidal may be obtained by adapting the analysis given in

Ref. 22.
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Appendix A. Leaky Lamb wave parameters P1t and cl/c

A Sommerfeld-Watson transformation has not been directly applied to the exact

partial-wave series for the backscattering from a evacuated elastic spherical shell.

However, some results from a Sommerfeld-Watson transformation of the form function for

backscattering from an solid elastic sphere can be extended to the case of a shell. It can be

argued from the geometric similarity of the two scatterers that certain results of a

Sommerfele-Watson transformation off for the shell will produce analogous results. In

Sec. 4-2.A. a genmetric intemretation of the backseattering of surface Lifided elastic waves

from a solid elastic sphere was employed in modeling .fhe backscattering from a shell. In

this Appendix, the methodology for the determination of P/(x)and cl(x)/c is briefly

reviewed.

From Williams and Marston's analysis, 7 the radiation damping parameter and

surface guided elastic wave phase velocity are obtained by solving the following equations:

Dv/(x) = 0, (A1)

V1 = al + i~1, (A2)

(cl/c) = x/(a1l + 1/2). (A3)
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Equation (A1) is the determinant of the denominator in Eq. (3) where the integer index n

has been replaced everywhere by a complex index vi. The complex index vj for fixed x is

obtained by numerical techniques described in Ref. 12. These numerical techniques

involve the evaluation of residues of certain integrals. Once v1 is determined, then both [il

and (cl/c) via Eq. (A3) are known. The radiation damping parameters Pf(x) for the various

leaky Lamb waves are shown in Fig. Al. An important feature in Fig. A1 is that P1 for the

ao, so, al, and S2 leaky Lamb waves are relatively small throughout the range of x

investigated; while P1f for the sl leaky Lamb wave appears to diverge. The truncation of the

vertical axis at 0.8 Np/rad resolves the detail of some the Lamb wave damping parameters,

but it obscures the fact that the s, damping parameter becomes large forx < 72 (01 = 3.5 at

x = 70 and 01 = 7.5 atx = 65). The derivationI leading to Eq. (7) made the assumption

21r0 1 << 1. It may be argued, however, that Eq. (7) is a good approximation for G1 even

when 2ntI3i violates this assumption. 1 Inspection of Figs. 4 - 6 supports the claim that Eq.

(7) with ýj = 0 is a valid approximation for GI even if 2UtI is not << 1.

The normalized dispersion curves for the leaky Lamb waves are shown in Fig.

A2. Mode identification was confirmed by comparison with curvature corrected results for

a flat plate in vacuum following the method of Ref. 17. Several characteristics should be

noted. First, the ao leaky Lamb wave (solid line) becomes subsonic forx < 7.

Sammelmann et al.30 have reported a bifurcation of the ao leaky Lamb wave dispersion

curve for the fluid-loaded spherical shell near a value of x associated with the transition

from a supersonic to subsonic phase velocity for the dispersion curve of the ao Lamb wave

on a spherical shell in vacuum. Since the relevant contributions to the present ray synthesis

are implicitly supersonic, the subsonic branch was not included in Fig. A2. The dispersion

curves for al (long-dashed line) and s2 (dot-dashed line) are analogous to the flat-plate

Lamb wave dispersion curves. Both the al and s2 modes appear to approach well defined
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Fig. A l The radiation damping parameters for the various leaky Lamb waves employed

in Ifray I for the stainless steel shell considered. Each leaky Lamb wave is associated with

the following line: ao solid; so short-dashed; al long-dashed; s1 short-long-dashed; and s2

dot-dashed.
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Fig. A2 The normalized dispersion curves for the various leaky Lamb waves employed

in Ifray I. Each Lamb waves is associated with the following line: ao solid; so short-

dashed; al long-dashed; Sl short-long-dashed; and s2 dot-dashed. The dotted lines are

based on corresponding mode calculations for a flat plate in a vacuum with curvature

corrections as given by Marston (Ref. 17). These are included so as to confirm the

classification of modes given.
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cutoff frequencies. As in Fig. Al, the vertical axis has been truncated and the asymptotic

behavior of these modes is not adequately represented. For example: for I = al, cl/c = 27

at x = 42, and for I = S2, cl/c = 32 at x = 85.

The phase velocity ratio for the so Lamb wave is represented by the short-dashed

line in Fig. A2. Two features are observed from this dispersion curve. First, the so Lamb

wave is weakly dispersive in the ranges 10 <x < 40 andx > 80. As discussed in

Appendix B, the spacing Axres between adjacent resonance peaks in Fig. B2 is

approximately equal to the normalized group velocity C5gJC for weakly dispersive Lamb

waves. Second, the dispersion curve appears to diverge as the frequency approaches the

natural frequency coB of a purely radial oscillation or breathing mode of the shell. Such a

divergence is plausible since the radial displacement of the shell at all points on the surface

is in phase when o = oB. In Appendix A of Ref. 15, WoB for a thin spherical shell in

vacuum is related to the ring frequency cOR of an idinite cylindrical shell, 3 1 The estimated

value of x corresponding to woB is xE = 6.3. Furthermore, it is argued in Ref. 15 that the

fluid-loading of the spherical shell will only slightly reduce xB.

The normalized phase velocity for the sl Lamb wave is the final dispersion curve in

Fig. A2 to be considered (the long-short dashed line). Unlike the aI and s2 leaky Lamb

waves, the dispersion curve for the sI leaky Lamb wave on the fluid-loaded shell does not

approach a definite cutoff frequency. The cutoff frequency for the equivalent s 1 Lamb

wave on a flat elastic plate in a vacuum corresponds to29 x = 76.8. Near x = 71, the sl

leaky Lamb wave attains a maximum value and then decreases with decreasing x. The

group velocity is related to the phase velocity by 12

cgt = cl{ 1 - [1 - (c/x)(dc1ldx)-1]-1). (A4)
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Numerical differentiation indicates that sl on a fluid-loaded shell has a negative group

velocity in the region 65 < x < 71. The normalized group and phase velocities are

displayed in Fig. A3. The possibility of a wave propagating with a negative group velocity

was first investigated by Lamb. 32 Hackman and Sarnmelmann 33 have reported. that an

analysis of the poles of the S-matrix in the complex k-plane produces regions of negative

group velocities for some leaky Lamb waves on thin elastic spherical shells. Finally, the

dispersion curve has been truncated below x = 65 because the numerical algorithm

implemented in the determination of c/c becomes inaccurate.

Without resorting to the above numerical differentiation, the sign of the group

velocity for a leaky Lamb wave on a fluid-loaded shell can be determined from tile slope of

a•(X). If Eq. (A3) is differentiated with respect to x, then the result is

dx c C dx)" (A5)

Equation (A4) relating CgI and cl can be inverted to obtain an expression for the second term

in Eq. (AM). Substituting this result into Eq. (AM) gives the simple result o'/(x) = CICgi.

Although a plot of ctj(x) is not presented here, it has been verified that atfx) has a positive

slope for x > 71, attains a local minimum near x = 71, and has a negative slope for x < 71.

Appendix B. Fabry-Perot expression for ft

In this appendix, the ao and :7o leaky Lamb wave contributions to the

backscattering amplitude are isolated and examined. By considering an individual

contribution, the resonant nature of Eq. (6) is demonstrated and the similarity between Eq.

(6) and a Fabry-Perot resonator is illustrated. Figure BI is Ifi I where I = ao and Fig. B2

corresponds to Ifi I for the so leaky Lamb wave. The width of any given resonance peak

from the ao Lamb wave contribution in Fig. B I is representative of relatively low Q
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Fi -. A3 The normalized phase (dashed) and group velocity (solid) for the sl leaky Lamb

wave in the vicinity of the anomaly near x = 71 and longitudinal resonance at XLR = 76.8.

The small oscillations in the group velocity (x > 73) are a result of numerical

differentiation.
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resonances while Fig. B2 for so contains both high Q resonances (x 5 40) and low Q

resonances (x > 40). Ordinarily, the increment in x for these calculations of Ifi I (I = ao, so)

is Ax = 0.015875. In Fig. B2, the high Q resonances of the so Lamb wave atx = 17.6,

21.3, 25.0 and 28.6 have been enhanced by sufficiently decreasing Ax to resolve the very

narrow hinewidths. It may be inferred from Fig. B2 and Eq. (16) that a partial-wave series

calculation will be numerically intensive, since Ax must be chosen small and nnma exceeds

X.

Consider the form of the denominator in Eq. (6). If a Lamb wave on the shell is

non-dispersive, then the spacing between two adjacent resonances would be Axres = ClC.

For weakly dispersive Lamb waves, it is well-known that AX res - cgIc. The relationship

between AXres and cgl can also be obtained from the 'orm of the denominator in Eq. (6).34

Figure A2 demonstrates that the a0 leaky Lamb wave is weakly dispersive for x > 50 and

cgllc = 2.178 (see Fig. 6 of Ref. 12). Inspection of Fig. B1 indicates that the spacing Axres

forx > 50 is AXres = 2.123 (for comparison 1.947 < cl/c < 2.037, 50 < x < 100). Again,

the dispersion curve in Fig. A2 indicates the so leaky Lamb wave is weakly dispersive in

the regions 10 < x < 40 and x > 80. The spacing between adjacent peaks in the region 10 <

. < .1•, -MP , I LLU"•VI.. .. A IL.A.- I A I ,. ,". IA.) L, A res -'.%" X ,. AR1.v •-UI eri c UJI X,,,ýI .. A.A.. .. .. . . .

predicts Axres - cgjc = 3.616 ( at x = 14, c1/c 3.978). A thorough investigation of the

dependence of Axres on cj/c and c.1/c for dispersive leaky Lamb waves is beyond the scope

of the present appendix.

Also, contained in Figs. B I arid B2 are envelops of the maximum and minimum

values that Ifi I can attain. From Eq. (6), I1 f Imax and Ift Imin occur when exp(i2rxccl) -- 1

and exp(i2itxc/cl) = 1, respectively. Inspection of Eqs. (6) and (7) demonstrates that If Iq

(q = min, max) is an implicit function ofx through the dependence of P1i and cl/C on x. The

importance of the lower envelop is that it describes a smooth background associated
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Fig. B I The Fabry-Perot representation of the ao leaky Lamb wave contribution to the

form function for backscattering from an evacuated elastic spherical shell. The long-dashed

line is the maximum value that Ifj I can attain and the short-dashed line is a minimum

envelop which can be interpreted as a smooth background associated with off-resonance

contributions from the ao Lamb wave. The widths of the resonances are representative of

relatively low Q leaky Lamb wave resonances.
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Fig. B2 The Fabry-Perot representation of the so Lamb wave contribution to the form

function for backscattering. The long-dashed line is the maximum value that Ifi I can attain.

The short-dashed line is a minimum envelop which can be interpreted as a smooth

background associated with off-resonance contributions from so. The widths of the

resonances for x < 40 are representative of high Q leaky Lamb wave resonances.
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with the lth leaky Lamb wave. The resonance enhancement rises above the background.

Unlike resonance scattering theory 35-37 where a suitable background contribution must be

chosen to synthesis the backscattering amplitude, the Fabry-Perot form of Eq. (6) correctly

accounts for a background contribution even for off-resonance values of x. That is, the

resonance peaks in Ifi I rise relative to Ifi Imin which represents a off-resonance smooth

background. I

Appendix C. Localization principle analysis of partial waves near a

longitudinal resonance

The localization principle states that the nth partial-wave amplitude for scattering

from a sphere may be associated with the contribution to the scattering from a ray having an

impact parameter 14

s = a(n + 1/2)/x. (Cl)

For s > a, rays miss the sphere, and the partial wave amplitudes typical]y decrease abruptly

in magnitude as n increases above x. Here, we analyze the elastic response of the shell by

considering the contribution of individual partial-wave amplitudes in the form function for

backscattering. The elastic behavior of the shell is isolated by subtracting a rigid

background. The relevant expression in the present analysis is

(Bn(x) J'n(X)

F(xn) =f(x) - -x2 (-1)n(2n+1) D(+ (1) , (C2)
Ix hn (x)

where the prime indicates differentiation with respect to the argument. The second term in

Eq. (C2) represents the subtraction of an acoustically hard or rigid immovable sphere

background. 37 In particular, the cause of the anomalous peak in the ray synthesis near x =
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71 and a possible relationship between the longitudinal resonance and the ý1 leaky Lamb

wave are considered below.

Figare C1 shows I F(x,n) I for x = 71.7 which corresponds to a value of x at the

center of the peak in E2 of Fig. 7. Figure Cl illustrates the localization principle since the

important contributions are the partial-wave amplitudes at n = 8 - 11, 15, 27, and 35. These

correspond to various leaky Lamb wave contributions as well now be shown. Inspection

of Fig. 1 and Eq. (4) demonstrates that the impact parameter is related to the outer radius of

the shell by

s = a sin(Oj) = ac/cl. It follows that a partial wave amplitude can be associated with a leaky

wave contribution by

n = x(c/c/) - (1/2). (C3)

Table CI gives the result of applying Eq. (C3). Inspection of Fig. C1 and Table CI indicate

that the ao, so, and aI leaky Lamb wave contributions are isolated and associated with a

single partial wave amplitude. An interpretation of the n = 8 - 11 partial-wave amplitudes is

that a broad bundle of rays couples to the Si leaky Lamb wave on the shell and and that

wave contributes to backscattering. This may be consistent with the direct backscattering

mechanism proposed in Sec. 4.4.

One may anticipate some relationship between the longitudinal resonance and

the si Lamb wave, since the resonance condition in Eq. (la) gives xLR - 76.8 which is

equivalent to the cutoff frequency of sl on a vacuum-backed flat elastic plate. Information

concerning the longitudinal resonance and the Sl leaky Lamb wave can be obtained by

studying the contributions to the fomi function due to individual partial waves. Figure C2

displays a sequence of partial-wave amplitudes as a function of x in the vicinity of xLj.

The series of large peaks starting near x = 55 and n = 16 corresponds to the so mode and

the set of narrow peaks is due to the al leaky Lamb wave. Since an estimate of the
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Fig. C 1 Localization principle analysis of the elastic response of the shell at x =7 -.7.

Each peak is associated with a particular leaky Lamb wave contribution. A particular leaky

Lamb wave can be associated with a given peak by applying Eq. (C3). (See Table CP.
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TABLE CI. Localization principle identification of the partial wave amplitudes at x = 71.7

plotted in Fig. Cl. The normalized phase velocity is given by Eq. (A3) for the stainless

steel shell and n is given by Eq. (C3).

i cli/c n

ao 2.023 34.9

so 2.620 26.9

al 4.678 14.8

s1 6.484 10.5



136

normalized group velocity is given by CglI/C AXres/An, then the so and al peaks

demonstrate the usual behavior of positive cgl/c for a surface guided elastic wave. The

remaining set of peaks is prinmarily associated with the sl leaky Lamb wave. Two

important feature are immediately evident. First, the group velocity of the sl Lamb wave

can have either positive or negative values as demonstrated above in Appendix A. This can

be seen by considering the slope, AXr,,s/Al, of a smooth curve through the peaks.

However, a discrepancy between the dispersion curves from the analysis in Appendix A

and the present method for estimating cgl/c is also evident. The result of Eqs. (Al) - (A3)

in Fig. A2 produces a single-valued function of cj(x)/c. Equation (C3) and the partial-wave

amplitudes in Fig. C2 would suggest, however, that cl(x)/c is a multi-valued function of x

for I = si. Furthermore, the dispersion curve for sl in Fig. A2 is defined for x < 71, but

Fig. C2 displays that no corresponding peaks in the partial wave amplitudes to account for

this region. A second observation concerning these peaks is that as n tends to zero, the

locus of x corresponding to these peaks appears to approach xLR. The weak peak in I

F(x,O) I near x = xLR appears to be a consequence of the use of a rigid background in Eq.

(C2) which does not display a longitudinal resonance. A calculation of I F(x,n) I (not

shown) where the rigid background has been replaced by an evacuated fluid shell

background demonstrates that the peak in I F(x,O) I near x = xLR is suppressed. This

suggests that the peak in I F(x,O) I displayed in Fig. C2 is associated with the longitudinal

resonance.
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Fig. C2 A sequence of individual partial-wave amplitudes demonstrating the elastic

response of the shell in the vicinity of the longitudinal resonance. The sharp peaks are due

to the al leaky Lamb wave and the large peaks (n > 15) are associated with so. The sl

leaky Lamb wave peaks form the crescent shaped set.
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Appendix I

A. Complex coupling coefficient: Approximation and an apparent exact

expression

In the development of the ray methods presented in the preceding chapters, a

complex coupling coefficient is defined and denoted as GI. This coefficient describes the

efficiency of the coupling of the incident acoustic wavefield in water with a surface guided

elastic wave excited on the elastic spherical object during the scattering process. For the

case of backscattering from a solid elastic sphere, a Sommerfeld-Watson transformation of

the exact partial wave series representation of the form functionf gives a virtually exact

expressionl,2
() c ic i Dv (x)/

G = •c I + I 2 '1)

The radiation damping of the surface guided elastic wave is PI (in Nplrad) and x = ka is a

dimensionless size parameter where k is the wavenumber in the surrounding water and a is

the radius of the sphere. The normalized phase velocity of the surface guided elastic wave

is cl/c. The functions D+ and D- are extremely complicated expressions involving

comnbinla LIatVios ofI spher icatl Bessel and Neumnann fiUnctons of complex order vj and .eal.

argument. The functions D+ and D-- for a solid elastic sphere are given in Refs. 1 and 2.

The dot above D+ indicates differentiation with respect to v and this derivative is to be

evaluated at vl where vj satisfies the relationships

Dv W = 0, V1 = 0X1 + ip3l, cI(X)/c = X/[ lI + 1/2]. (2abc)

Equation (2) is a result of the above mentioned Sommerfeld-Watson transformation. [The

vj that satisfy Eq. (2) also satisfy Dv(x) = 0 where Dv is the denominator of the nth partial-

wave amplitude, 1.4 fn(X) = (-l)n(2n4.1)(2/ix)[Bn(x)/Dn(x)], with the integer index n
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replaced by v.] The complicated form of G1 in Eq. (1) obfuscates the dependence of G1 on

the relevant surface guided elastic wave parameters j3l and cl/c, A simple approximation for

Eq. (1) would facilitate computations of forward or backvards scattering by the

quantitative ray methods previously developed.

Marston developed a simple approximation for I G1 I by comparing the results of

resonance scattering theory5,6 and a generalization (based on Watson transform methods)

of the geometrical theory of diffraction.2 A short summary of this analysis follows and it is

restricted to the backscattering direction. In resonance scattering theory at the location of an

isolated resonance,f, is split into an appropriate background term and a surface elastic

wave contributionf, . The contributionfni is usually expressed in a Breit-Wigner form

(2n+]l) , ni2ýnt I rnl
f , x -_) ( x nx-(i/2)F/ n1 (3)

where Xnj is the location of an isolated resonance and the width of the resonance can be

related to rni. Define the scattering function Sn(x) = { [2)3n(x)/Dn(x)] - 1 . The

denominator of Sn(x) can be written so as to contain the information about the resonance

location and damping; XnI is the real root of the real part of that denominator. Equation (3)

s "areut of applying a T ayor Series expans1ion to ULF, .L..I.LU.aL.I . •- ,-.1- A -. An

and separatingfni from a background contribution. For high-frequency backscattering

from a solid elastic sphere, fn for a rigid or immovable sphere is a suitable choice of

background. It can be shown that Re{ Dn(x = Xnl)} = 0 where Dn is the denominator offn.

The subscripts n and l imply that the isolated resonance occurs infn and it is classified as

the Ith type of surface elastic wave resonance (Rayleigh, Lamb, Franz, etc.). From the ray

synthesis, a surface elastic wave contribution to backscattering has the following Fabry-

Perot form7
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f/(x) G, e- iql e -2n- 0 1)01t ]/[1 - e-2 ],eira (4)

where Ti1 is a propagation phase delay. The basic premise 2 leading to an approximation for

G1 is that if both Eq. (3) and Eq. (4) describe the resonance contribution of a surface elastic

wave, then locally near the isolated resonancefl(x) =Jjt(x). The remainder of the analysis

involves applying Taylor series expansions to PI(x) and ctl(x) about x = Xnt. Here, Xnl is

a real value of x such that Oxj(Xnt) = n and the denominator in Eq. (4) attains a local

minimum. With these expansions, Eq. (4) can be cast into a form similar to Eq. (3)

Glel~ ^.(I nl + i2•n/(5
f (x) i4-c n1 +ýý nd__(1)7

where
8 ni = nin•I/[ an, ' + P'nl 2 ' nl = 2P /[ CC + 13n2 ]" (6a,b)

The prime in Eq. (6) indicates differentiation of clj(x) and PI(x) with respect to x evaluated

at x = Xnj and 0.1 = PI(Xnl).

Inspection of Eqs. (3) and (5) demonstrates that the location of poles in the complex

x-plane forfnl andfl coincide if Xnl = Xnj + 8nj and Fnl =,Ynl. Numerical computations for

tungsten carbide and aluminum spheres indicate I 8nl! << 1, which suggests the following

conditions I 5n I << ynl and (dlj/dx) << (da/dx). With these conditions and pole

locations, comparison of Eqs. (3) and (5) reduces I G1 I at an isolated resonance to the

appro-imate form

(n+1/2)Stf3ni
I GI(x =Xn1) I = . (7)

The form of Eq. (2c) and the identification of [(n + 1/2)iXnl] = [(otU(Xnl) + 1/2)/X,,1]

suggests the following smooth continuation of Eq. (7)

I GI(x) I = 87CP 1(x)c/c 1(x). (8)
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Equation (8) is a simple approximation for I GI I which explicitly exhibits the dependence of

I GI I on the relevant surface guided elastic wave parameters.

While this analysis gives a simple approximation for I G1 I, it was initially deemed

too complicated to construct an approximation for the phase of GI from the above analysis.

However, Williams and Marston have subsequently demonstrated that arg(Gl) - 0 for

surface guided elastic wave contributions to backscattering from solid or hollow elastic

spheres. 8,9 Recently, Ho and Felsen have confirmed Eq. (8) with arg(Gl) = 0 for

backscattering from thin elastic spherical shells.10,11 It is noteworthy that their analysis is

based on thin shell equations while the above results are from an analysis starting from the

exact partial wave series for backscattering from elastic spheres.

A Watson transfonrmation of the exact partial wave series representation of the form

function for backscattering from an elastic spherical shell has not been performed. From

the geometric similarity of the sphere and shell, it can be argued that the complex coupling

coefficient for the shell will have the same form as Eq. (1). The shell and sphere coupling

coefficients should only differ in the definitions of D+ and D- in Eq. (1). The appropriate

expressions are

+ (1) (2)
~t(X) - .ý, (x) - F, (x), ~Tý(X) -zý (x) -- Fv (x), (9a)

=v (x=h x x, z x xhv (x)k , (9b)

2 (1) (2)
Fv(x) = - xt pDv (x)/peDv (x). (9c)

In Eq. (9b), the hv are spherical Hankel functions of the first and second kind of complex

order and real argument and the priie denotes differentiation with respect to the argument.

In Eq. (9c), x, =xclct whcee ct is the trpinsvcrse velocity of the shell's material and D(1)

and D(2) are the cofactor expansions wth icspfnt to the elements diI and d2l of D. fromfn
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with n replaced by v. For solid spheres, D(O) and D(2) are 2 x 2 determinants while for

evacuated shells DO) and D(2) would be 4 x 4 determinants (see Refs. 1 and 3 for the

elements of the detenninants). This suggests that the approximation in Eq. (8) can be

applied to shells for certain classes of surface guided elastic waves.

The remainder of this section compares the consequences of using Eq. (8) with

arg(Gj) = 0 instead of Eq. (1) for an elastic spherical shell. The material of the shell is

440c stainless steel with the following parameters: longitudinal sound speed CL =

5.854m/n/s, transverse sound speed ct = 3.150km/s, density Pe = 7.84g/cm 3 and inner-to-

outer radii ratio bla = 0.838. The parameters for water are c = 1.479km/s and p =

1.00g/cm3. For these parameters and the frequency range 0 < x < 100, the relevant surface

guided elastic wave contributions are the ao and al antisymmetric (or flexural) leaky Lamb

waves and the s0, si, and s2 symmetric (or dilatational) leaky Lamb waves. [The present

ray synthesis is implicitly supersonic through the use of the phase velocity trace-matching

condition sin(Ol) = c/cl. Since the ao leaky Lamb wave becomes subsonic for x < 7, the

actual range investigated is 7 < x < 100. Also, for x < 10 contributions from Franz-type

creeping waves rr -ontribute significantly to backscattering.] Finally, partial lists of the

relevant leaky Lamb wave paramietes are coLntained in t-able- in Apndix LA L. M--e "-d-L-

discussions of these leaky Lamb wave parameters are contained in Appendix A of chapters

2 and 4.

Comparisons of I GII as computed from Eqs. (1) and (8) are displayed in Figs. 1a -

4a. These figures correspond to the ao, so, al, and S2 leaky Lamb waves, respectively.

The solid line represents the exact I GI I while the dashed line corresponds to the

approximation. It is immediately evident that the two curves for I GI I are barely

distinguishable for these leaky Lamb waves. Hence, Eq. (8) appears to be an excellent

approximation of I G1 I for these leaky Lamb waves. The phases of the exact coupling
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Fig. 1 In (a) the exact I G1I from Eq. (1) for I = ao is the solid line and the approximatiun

from Eq. (8) is the dashed line. The agreement between Eqs. (1) and (8) is excellent. The

phase of the exact GI is shown in (b) and verifies the assumption arg(Gl) = 0. The material

of the shell is 440c stainless steel with radii ratio b/a = 0.838.
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Fig. 2 In (a) the exact I G1 I from Eq. (i) for I = s.) is the solid line and the atproxi.,ationi

from Eq. (8) is the dashed line, The agreement between Eqs. (1) and (8) is exccllent. The

phase of the exact G1 is shown in (,b) and ve-ifies the assumption arg(Gj) 0 0. Tae materiil

of the shell is 440c stainless stcel with radii ratio b/a = 0,838.
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Fig. 3 In (a) the exat I G1I from Eq. (1) for I = aI is the solid line and the approximation

from Eq. (8) is the dashed line. The agreement between Eqs. (1) and (8) is excellent. The

phase of the exact GI is shown in (b). The fine structure evident in arg(GI) is attributed to

the method of calculation of the derivative in Eq.(l). The material of the shell is 440c

stainless steel with radii ratio b/a = 0.838.
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Fig. 4 In (a) the exact I G1 I from Eq. (1) for I = s2 is the solid line and the approximation

from Eq. (8) is the dashed line. 'Ihe agreement between Eqs. (1) and (8) is excellent. The

phase of the exact GI is shown in (b). The structure in arg(Gt) may be associated with the

fluid-loading of the shell. The material of the shell is 440c stainless steei with radii ratio b/a

- 0.838.
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coefficients, arg(Gj) = tan-1 [In { Gj /Re ( Gi 1], for these Lamb waves are presented in

Figs. lb - 4b. These figures indicate that the assumption arg(Gl) = 0 (1 = ao, so, al, and s2)

is acceptable for the ray synthesis calculations. The apparent deviation in Figs. lb and 2b

from arg(Gl) = 0 (1 = ao, so) for x < 20 might be anticipated since the Watson

transformation is an asymptotic analysis. The effects of the fluid loading of the shell are a

plausible cause for the structure evident in arg(Gl), I = s2, since near a cutoff frequency the

fluid loading may significantly affect the behavior of the leaky Lamb wave.12 The rapid

variation in arg(GI), I = al, is attributed to the method used in computing the derivative of

D+ with respect to v. However, inspection of the ray synthesis of the form function for

backscattering in chapter 4 and the total scattering cross section in chapter 2 demonstrates

the usefulness of Eq. (8) with arg(Gl) = 0.

The sl leaky Lamb wave contribution to backscattering demonstrates behavior that

merits a more detailed discussion. Figuare 5 displays I G1 I calculated using Eqs. (i) 4nd

(8). In Fig. 5, the dashed line is the approximation and the so.i curve is the exact I Gl 1.

Inspection of Fig. 5 indicates that Eq, (8) is an excellent approximation for I G1 I when x >

72, but it appears to diverge from the exact coupling coefficient for x _• 72. The resolution

in the region of the divergence is enhanced in Fig. 5b to give greater detail of the maximum

in the exact I G1 I. Furthermore, the phase of the exact ý-7j in Fig. 6 supports the assumpticn

arg(GI) = 0 for x > 72, but arg(Gl) appears to have a -n/2 phase shift in the vicinity ofx =

72. The apparent divergence of Eq. (8) from the exact I GI I and the -7/2 phase shift are

related to the negative group velocity of the sl leaky Lamb wave. In Appendices A and C

of chapter 4, this leaky Lamb wave is shown to have a negative group velocity for x < 72.

Hence, the approximation in Eq. (H) for I G1 I with arg(Gl) = 0 appears to be applicable for

those surface guided elastic wave that have positive group velocity and seems to

breakdown when the group velocity becomes negative.
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Fig. 5 A comparison of the exact I GI 1, 1 sj, from Eq. (1) (solid line) and the

approximation from Eq. (8) (dashed line). Figure 5a demon strates the appar-ent divergence

of the approximation from the exact I GI I while Fig.. 5b enhances the resolution near the

maximum in I GII at x =72.
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Fig. 6 T he phase of the exact GI, arg(GI) = tan-l[Im(Gj)/Re(Gj)J. When x > 72, the

assumption aig(Gl) =0 is apllicable. But, nearx = 72 arg(Gj) has a-r.12 phase shift,

This shift is attribtlted to the necgtive group velocity of the I = Sl leaky Lamb wave for x <

72.
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Two important numerical techniques used in the determination of the exact GI are

noted. First, the derivative, dD+/dv, evaluated at the ith leaky Lamb wave pole v = vI is

performed by a contour integration. The theory of residues from complex analysis gives

.... _ dv, (10)(I C(V-V,)2

where '0- is assumed analytic everywhere within and on the contour C and Vj is contained

within C. For the numerical algorithm implemented, C is chosen so as to isolate the

residue of the pole at v = vi from any other possible residue contribution. While Eq. (10)

appears to be a good method for the evaluation of dDý-/dv at v = vi, there seems to be

regions where numerical round-off may corrupt the result from Eq. (10). To minimize this

typc of possible nurncrical error, a threc-point sliding average was implemented on I Gi I

and arg(GI). This sliding average tends to smooth any fluctuations in I GI I or arg(GI)

introduced from implementation of Eq. (10).

B. Significance of the group velocity and its sign

To better understand the breakdown of Eq. (8), it is first necessary to review the

relationship between the group and phase velocities and the spacing between adjacent

resonances. The group velocity for the Ith leaky Lamb wave cgI is defined by cgl = dco/dk1

where co is the angular frequency and ki is the wavenumber of the Lamb wave propagating

on the shell. The phase velocity of the Ith leaky Lamb wave is cl = o/kI and the phase

velocity of the incident wave is c = (o/k. The group and phase velocities for the Ith leaky

Lamb wave are related by

Cg1 = c{f I - [1 - (cl/X)(dclI/dx)-]-l. (11)
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It is generally accepted that for a weakly dispersive surface guided elastic wave the spacing

between adjacent resonance peaks is AXres = cl!C. If the leaky Lamb wave propagates

without dispersion, then Eq. (11) reduces to the expected result Cgl = cl.

The simple relationship AXres = CglC can be established from the Fabry-Perot form

of a leaky Lamb wave contribution to backscattering. If x -Xm, (m = 1,2), correspond to

different resonances infl, then xl and x2 are adjacent resonance if the phase 4(x) =

27tal(x) in the denominator of Eq. (4) changes by 2n as x = x1 is increased to x2. The

condition for adjacent resonances becomes [a/(x-) - oftl(X)] = 1 where AXres = X2 - xl. A

two term Taylor series expansion of czl(x2) about x = x1 gives the expression

AXres `- [a'/(x = x)]"1 where terms of order (Axres) 2 and higher can be neglected for

weakly dispersive leaky Lamb waves. The function oc1(x) can be evaluated from Eqs. (2c)

and (11). Differentiation of Eq. (2c) gives oa'/(x) = (c/c1 )[ I - (x/c1 )(dclidx)]. From Eq.

(11), the second term in a'1(x) becomes (x/c1)(dc1/dx) = (cgI -- cl)/cl. Combiuing these

results gives the simple expressions

cz%(x) = A/c ,rs = cgs/c. (12a,b)

Equation (12b) has been verified in Appc -idix A of chapter 4 for regions of Y, where the ao

and so leaky Lamb waves demonstrate weak dispersion.

The relevance of Eq. (12a) to the s I leaky Lamb wave contribution to backscattering

and the breakdown of Eq. (8) for the coupling coefficiert may be found by examining

oq(x). The instantaneous slope of oj(x) is cCI(x) which implies that the group velocity of a

leaky Lamb wave can be dcrectly obtained from the Watson transfowrmaton without the usu

of Eq. (11). Figures 7a and 7b are utl(x) and it(x) determined by a Watson methodology.

Figure 7a shows that olc(X) is positive br x > 72, gces through zewo neaw x = 72, and is

negative for x < 72. As x approaches x -; 72 from above c.j/c divergences to 4-,o and
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divergences to - as x approaches 72 from below. Hence, Fig. 7a confirms the group

velocity calculation displayed in Fig. A.3 of chapter 4 for the sl leaky Lamb wave. The

radiation damping parameter J31, 1 = s, is shown in Fig. 7b for completeness. Inspection

of Fig. 7b and Eq. (4) demonstrates that for x < 72 contribution from circumnavigation of

the sl Lamb wave about shell is negligible. The locus of sl leaky Lamb wave roots vt(x),

I = si is displayed in Fig. 8.

Finally, the width of an isolated resonances is related to rn. in Eq. (3). With the

assumed coincid.nce of the poles offni(x) andfi(x) in the complex x-plane Frn becomes Ynj

as noted below Eq. (6). Inspection of Eq. (6b) suggests, however, that fnl would go to

zero near x = 72 as (x'(x) varishes. Furthermore, since a'1(x) becomes negative for x <

72, then ynl would be negative for any resonances in this region. That is, the width of

leaky Lamb wave resonances would appear to be negative for a leaky Lamb wave with

negative group velocity if the resonance is assumed isolated having the form of Eq. (3).

When cgl/c is negative, however, the ,rgument breaks down since the resoniance spacing

from Eq. (12b) is predicted to be negative. It would appear that the derivation that ",nl < 0

also breaks down. Finally, when cgl/c < 0, it may also be argued that the combined result

of Eqs. (4) and (8) with arg(GI) =- 0 is incomplete,

One caveat is noted. From Fig. (7b), it is observed that the sl leaky Lamb wave

has a rather large radiation damping parameter. In Ref. 2, the assumption 2731 << I was

used in deriving Eq. (8). Subsequently, this condition was determined to be too restrictive

and Eq. (8) has been shown to give fairly good agreement with the exact I GI I even when

27E3k << 1 is not salisficd. 2 [Whether the group velocity is positive or negative for the

relevant surface elastic waves in those comparison was not pursued.] Furthermore, the

expi-2(p. -- 01)P] factor in Eq. (4) indicates that the sl leaky Lamb wave contibution in
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Fig. 7 The l =sl leaky Lamb wave parameters: (a) aCI(x) and (b) DjI(x). The instantaneous

slope of af(x) is related to the normalized group velocity through Eq.(1 1). When the group

velocity becomes negative, the derivation leading to Eq. (8) may breakdown. From (b),

the radiation damping of the sI leaky Lamb wave is observed to bu extremely large.
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Fig. 8 The locus of the sl leaky Lamb wave roots from the Watson methodology. The ka

for the tipper and lower roots vI(x) are indicated in the figure. The ka of the inflection point

in v,(x) is also indicated.
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the ray synthesis for the ray path assumed in Eq. (4) is negligible for x < 72 since P1 is

large.

Finally, the present level of ray synthesis appears to be incomplete. The current ray

model includes contributions from a specular reflection and leaky Lamb waves which

circumnavigate the elastic spherical shell. The generalized specular reflection contains the

ordinary specular ray and rays associated with repeated internal reflections from the inner

surface of the shell at r = b (see Sec. 2 of Chapter 4). The inclusion of these internal rays

seems to correctly describe the manifestation of longitudinal resonances in the form

function for backscattering. The ray synthesis of the Ith leaky Lamb wave contribution

giving a Fabry-Perot form accounts for the propagation of the leaky Lamb wave around the

shell, but negiects the possibility of a direct ray contribution. A direct contribution from a

leaky Lamb wave is briefly discussed in Sec. 4 of Chapter 4 and is illustrated by ray B'A"

in Fig. 1 of Chapter 4 (where 01 -+ 0). The results of a Sommerfeld-Watson

transformation of the form function for backscatering from an elastic sphere,' which are

extended to the shell, are based on the assumption al» >> 1. This assumption may omit

direct ray contributions associated with a leaky Lamb wave when J31 " Otj. Furthermore,

x .4S t.J I• •1tJ%.*tAIJ *XAAU.r U• f O•.*It•. VrT UA ZO•.f.flUUtfl,.'. VT SUSz .Jk 5415x •,d A U~t.ltALLSJJ

damping.8 It is noteworthy that the use of the revised coupling coefficient shown in Figs.

5 and 6 does not remove the anomaly near x -z 71 in Fig. 7 of Chapter 4. That is because

Ifi I is small since 01 is large (PI _> 2) near this anomaly.
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Appendix I1

Leaky Lamb wave parameters

The contents of this appendix are five tables containing the parameters used in the

ray synthesis calculations presented in Chapters 2 and 4 and Appendix I. The method

employed in determining these parameters * line in Appendix A of Chapter 2 or 4. The

format of each table is four columns of numbers for the dimensionless size parameter ka,

normalized phase velocity of the leaky Lamb wave cic, the radiation damping parameter 01,

and cal = Re(vj) from the Watson transform methodology. These tables are for a 440c

stainless steel shell with inner-to-outer radii ratio b/a = 0.838. The material parameters for

440c stainless steel are given in Sec. 5 of chapter 2.

The computer code used in determining v! for the ith leaky Lamb wave at a fixed x

is essentially the same as the FORTRAN program ZNU implemented by Williams1 for

solid elastic spheres. This program is based on the winding number theory from complex

analysis which is discussed by Williams. Two modifications were made to ZNU for the

computation of vj for the evacuated spherical shell. First, the external function F(v) is the

determinant Dn(x) in the denominator of the partial-wave coefficient where the integer index

n is replaced everywhere by complex v. For spheres, Dvfx) is a 3 x 3 determinant and for

evacuated shells Dv(x) becomes a 5 x 5 determinant. The elements of Dn(x) for a shell are

listed in Appendix A of Ref. 2. Second, the routine OLVER that is employed for the

computation of Bessel and N -urrann functions of real argument and com,§ ,ýx order has

been slightly rewritten. Previously, this routine returned single precision values, but since

all other computations in ZNU (and in OLVER) are double precision OLVER was modified

to return double precision values. Ope other modification to OLVER consisted of the

rewriting of portions of the code that are in FORTRAN IV in standard FORTRAN 77.
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Once a root vi at a fixed x for the ith leaky Lamb wave was determined, it was

inserted into a secor ' computer code that tracked the locus vt(x). A discussion of the

nectssary mathematical theory is given in Appendix B of Ref. 2. The algorithm assumed

that vi(x) is a well-behaved function of x (3ee Fig. AI of Chapter 2) and that vj(x) was

approximately the value of Vi at x+Ax where Ax << 1. A square contour wL:& centered

about vj(x), x was increased (or decreased) by Ax and then the winding number was

determined from numerical integration of Eq. (B 1) in Ref. 2. If the winding number is

equal to one (an isolated zero, v = vj, of Dr(x) is enclosed within the contour), then Eq.

(B2) from Ref. 2 was integrated about the same contour. This recursive procedure was

implemented for the determination of the parameters given in Tables 1I. 1 - 11.5.

References

1. K. L. Williams, Ph. D. dissertation, Washington State University (1985); available

from the Defense Technical Information Center (Cameron Station, Alexandria,

VA), Accession number AD-A 158884.

2. S. G. Kargl and P. L. Marston, "Observations and modeling of the backscattering

of short tone bursts from a spherical shell: Lamb wave echoes, glory, and axiai

reverberation," J. Acoust. Soc. Am. 85, 1014 - 1028 (1989).



166

Table I. 1 The ao leaky Lamb wave parameters

ka cdc CClI ka cdc or/i

7.00 1.084072 5.957134 0.383446 8.00 1.145666 6.482839 0.349988

9.00 1.199730 7.001686 0.319891 10.0 1.248506 7509575 0,295577

11.0 1.293156 8,006322 0.276207 12.0 1,334342 8.493196 0.260708

13,0 1.372M58 8.971365 0.248181 14.0 1.408150 9.442120 0.237946

15.0 1.441409 9.906483 0.229505 16.0 1.472354 10.365476 0.222498

17.0 1,501791 10.81982 0.216644 18,0 1.529290 11.27017 0.211732

19.0 1.555182 li.71722 0.20761.3 20.0 1.579610 12.16135 0.204157

21.0 1.602686 12.60301 0.201267 22.0 1.624505 13.04259 0.198866

23.0 1.645162 13,48039 0.196897 24,0 1,664737 13.91669 0.195304

25.0 1.683309 14.35170 0.194052 26.0 1.700941 14.78566 0.193103

27.0 1.717691 15.21878 0.192434 28.0 1.733624 15.65114 0,197022

29.0 1.748780 16.08299 0.191845 30.0 1.763213 16.51439 0.191896

31.0 1.776967 16.94545 0.192153 32.0 1.790076 17.37634 0.192609

33.0 1.802577 17.80712 0.193257 34.0 1.814507 18.23787 0.194087

35.0 1.825891 18.66873 0.195096 36.0 1.836764 19.09969 0.196279

37.0 1.847151 19.53084 0.197632 38.0 1.857077 19.96226 0.199153

39.0 1.866561 20.39404 0.200840 40.0 1.875630 20.82616 0.202694

41.0 1.884300 21.25874 0.204714 42.0 1.892595 21.69176 0.206898

43.0 1.900525 22.12533 0.209249 44.0 1.908108 22.55949 0.211769

45.0 1.915362 22.99425 0.214458 46.0 1.922300 23.42967 0.217318

47.0 1.928935 23.86577 0.220342 48.0 1.935281 24.30260 0.223548

49.0 1,941352 24.74014 0.226932 50.0 1.947150 25.17855 0.230503

51.0 1.952696 25.61774 0.23424.7 52.0 1.957989 26,05786 0.238197
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53.0 1.963046 26.49886 0.242336 54.0 1.967873 26.94079 0.246672

55.0 1.972478 27.38371 0.251207 56.0 1.976872 27.82759 0.255943

57.0 1.981057 28.27252 0.260883 58.0 1.985041 28.71854 0.266031

59.0 1.988834 29.16563 0.271386 60.0 1.992438 29.61386 0.276951

61.0 1.995861 30.06326 0.282730 62.0 1.999109 30.51382 0.288721

63.0 2.002189 30.96557 0.294924 64.0 2.005101 31.41859 0.301338

65.0 2.007853 31.87290 0.307964 66.0 2.010449 32.32848 0.314796

67.0 2.012896 32.78538 0.321832 68.0 2.015195 33.24363 0.329068

69.0 2.017353 33.70323 0.336501 70.0 2.019376 34.16418 0.344117

71.0 2.021263 34.62655 0.351917 72.0 2.023021 35.09033 0.359887

73.0 2.024654 35.55553 0.368019 74.0 2.026168 36.02214 0.376265

75.0 2.027564 36.49020 0.384720 76.0 2.028849 36.95966 0.393266

77.0 2.030626 37.43055 0.401925 78.0 2.031099 37.90285 0.410681

79.0 2.032071 38.37660 0.419523 80.0 2,032949 38.85170 0.428427

81.0 2.033733 39.32823 0.437391 82.0 2.034432 39.80610 0.446391

83.0 2.035046 40.28531 0.455415 84.0 2.035585 40.76577 0.464444
5. 2.0 I A A46 44 1.2475 .4. A-1 -6.0 2.03436 44A. 7061 0.482477

87.0 2,036762 42.21485 0.491445 88.0 2.037024 42.70028 0.500374

89.0 2.037226 43.18685 0.509245 90.0 2.037374 43.67450 0.518053

91.0 2.037473 44.16318 0.526782 92.0 2.037521 44.65290 0,535432

93.0 2.037526 45.14359 0.543993 94.0 2.037491 45.63517 0.552456

95.0 2.037417 46.12766 0.560822 96.0 2.037309 46.62099 0.569089

97.0 2.037169 47.11510 0.577247 98.0 2.037001 47.60994 0.585298

99.0 2.036806 48.10551 0.593243 100.0 2.036586 48.60179 0.601084
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Table 11.2 The so leaky Lamb wave parameters

ka cY/c at of ka c/c a/

7.0 5.672502 0.734023 0.257460 8.0 4.768751 1.177588 9.36004c-O2

9.0 4.411582 1.540085 5.16725e-02 10.0 4.23521.4 1.861156 3.24039e-02

11.0 4.131961 2.162174 2,14516e-02 12.0 4.065046 2.451996 1.45435e-02

13.0 4.018514 2.735027 9.91413e-03 14.0 3.984383 3.013719 6.69481e-03

15.0 3.958239 3.289564 4.40952e-03 16.0 3.937482 3.563510 2.77951e-03

17.0 3.920461 3.836225 1.62705e-03 18.0 3.906104 4.108173 8.4022.0e-04

19.0 3.893684 4.379697 3.42250e-04 20.0 3.882687 4.651071 7.97300e-05

21.0 3.872742 4.922514 1.59100e-05 22.0 3.863574 5.194.21.0 1.24970e-04

23.0 3.854973 5.466319 3.89240e-04 24.0 3,846779 5.738986 7.96640e-04

25.0 3.838863 6.012345 1.33805e-03 26.0 3.831120 6.286527 2.01034e-13

27.0 3.8234-65 6.561658 2.81140e-03 28.3 3.815824 6.837864 3.74218e-03

29.0 3.808135 7.115277 4.80525e-03 30.0 3.800339 7.394032 6.00586e-03

31.0 3.792385 7.674275 7.35021e-03 32.0 3.784225 7.956158 8.84729e-03

33.0 3.775811 8.239845 1.05080e-02 34.0 3.767098 8.525516 1.23452e-02

35.0 3.758041 8.813362 1.43745e-02 36.0 3.748588 9.103615 1.66i37e-02

37.0 3.738693 9.396507 1.90834e-02 38.0 3,728302 9.692308 2.18088e-02

39.0 3.717362 9.991310 2-48179e-02 40.0 3.705806 10.293874 2.81443e-02

41.0 3.693569 10,60038 3.18271e-.02 42.0 3.680577 10.91125 3.59108e-02

43.0 3.666747 11.22702 4.04499e-02 44.0 3.651984 11.54825 4.55070Y-02

45.0 3.636183 11.87561 5.11561e-02 46.0 3.619230 12.20989 5.74824e-02

47.0 3.600981 12.55200 6.45916eo02 48.0 3.581286 12.90301 7.26029e-02

49.0 3.559972 13.26416 8,16586e-02 50.0 3.536840 13.63691 9.19230e-02

51.0 3.511670 14.02301 0.103584 52.0 3.484216 14.42445 0.116846
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53.0 3.454221 14.84355 0.1-,1937 54.0 3.421392 15.28305 0.149076

55.0 3.385458 15.74595 0.168431 56.0 3.346179 16.23551 0.190073

57.0 3.303382 16.75504 0.213381 58.0 3.257042 17.30757 0.239423

59.0 3.207344 17.89528 0.265850 60.0 3.154775 18.51879 0.291861

61.0 3.100104 19.17676 0.315840 62.0 3.044410 19.86520 0.336147

63.0 2.988909 20.57793 0.351540 64.,0 2.934767 21.30753 0.361481

65.0 2.88295o 22.04630 0.366147 66.0 2.834155 22.78737 0.366245

67.0 2.788?50 23.525 10 0.362730 68.0 2.746857 24.25557 0,356537

69.0 2.708440 24.97592 0.348488 70.0 2.673345 25.68442 0,339227

71.0 2.64i345 26.38025 0.329233 72.0 2.612192 27.00305 0.318843

73.0 2.585635 27.73292 0.308290 74.0 2.561434 28.39007 0.297732

75.0 2.539353 29.03508 0.287265 76.0 ,2.519193 29.66839 0,276955

77.0 2.500764 30.29058 0.266844 78.0 2.483897 30.90227 0,256955

79.0 2.468440 31.50402 0.247305 80.0 2.454265 32.09632 0.237902

81.0 2.441245 32.67980 0.228745 82.0 2.429277 33.25490 0,219838

83.0 2.418263 33.82216 0.2111PA1 84.0 2.408122 34.38195 0,202775

85.0 2. 39 7 7 5 34.93475 0.1940(16 86.0 2.390154 35. 4894 0. 18R77

87.0 2.382201 36.02085 0.179049 88.0 2.374851 36.55495 0.171636

89.0 2.368062 37.08347 0.164468 90.0 2.361786 37.60675 0.157544

91.0 2.355984 38.12505 0.150864 92.0 2.350614 38.63871 0.144424

93.0 2.345643 39,14797 0.1.38224 94.0 2.341044 39.65302 0.1.32259

95.0 2.336785 40.15415 0.126526 96.0 2.332840 40.65155 0,121020

97.0 2.329188 41.14542 0.115739 98.0 2.325805 41.63594 0.110679

99.0 2.322670 42.12336 0.105831 100.0 2.319769 42.60775 0.101101
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Table 11.3 The a leaky Lamb wave paratncters

ka cj/c al p1ka c" / al

42,0 28.71326 0.962739 6.85368e-03 43.0 16.73859 2.068915 l.28650e-02

44.0 13.12078 2.853460 1.66242e-02 45.0 11.22238 3.509846 1.94656e-02

46.0 10.014726 4.093236 2.17523e-02 47.0 9.164049 4.628737 2.36409e-02

48.0 8.525793 5.129975 2.52179e-02 49.0 8.025656 5.605420 2.65350e-02

50.0 7.621105 6.060729 2.76363e-02 51.0 7.285776 6.499941 2.85153e-02

52.0 7.002441 6.925982 2.92020e-02 53.0 6.759251 7.341106 2.97018e-02

54.0 6.547668 7.7-17211 3.00173e-02 55.0 6.361508 8.14574-9 3.01466e-02

56.0 6.196069 8.537988 3.00869e-02 57.0 6.047717 8.925045 2.98301e-02

58.0 5.913572 9.307947 2.93676e-02 59.0 5.791311 9.687675 2.86860e-02

60.0 5.679032 10.065181 2.77712e-02 61.0 5.575073 10.441560 2.66050e-02

62.0 5.478043 10.81791 2.51732e-02 63.0 5.386673 11.19553 2.34563e-02

64.0 5.299794 11.57594 2.14448e-02 65.0 5.216276 11.96100 1.91423e-02

66.0 5.135036 12.35288 1.65774e-02 67.0 5.055015 12.75416 1.38237e-02

68.0 4.975240 13.16768 1.10206e-02 69.0 4.895021 13.59595 8.38266e-03

70.0 4.814225 14.04024 6.16345e-03 71.0 4,733506 14,49945 4 .56 789e-03

72.0 4.654351 1.4.96940 3.66768e-03 73.0 4.578581 15.44380 3.41507e-03

74,G 4.507755 15.91615 3.75392e-03 75.0 4.442661 16.38177 4.63919e-03

76.0 4.383449 16.83795 6.06924e-03 77.0 4.329773 17.28384 8.03265e-03

"78.0 4.2I067 17.71976 1.05131e-02 79.0 4.236684 18.14666 1.34778e-02

80.0 4.190-021 18.56568 1.68916e-02 81.0 4.158494 18.97820 2,07165e-02

82.0 4.123632 19.38538 2.49176e-02 83.0 4.091011 19.78839 2.94636e-02

84.0 4.060276 20.18825 3.43295e-02 85.0 4.031121 20.58595 3.94923e-02

86.0 4.003290 20.98233 4,49350e-02 87.0 3,976569 21.37816 5.06404e-02
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88.0 3.950755 21.77423 5.65988e-02 89.0 3.925690 22.17118 6.27988c-02

90.0 3.901231 22.56964 6.92314e-02 91.0 3.877255 22.97021 7.5S885e-02

92.0 3.853650 23,37347 8.27627e-02 93.0 3.830321 23.77995 8.98488e-02

94.6 3.807183 24.19017 9.71307e-02 95.0 3.784153 24.60469 0.104604

96.0 3.76ti64 25.02401 0.112258 97.0 3.738158 25.44861 0.120075

98.0 3.715079 25,87898 0.128037 99.0 3.691880 26.31561 0.136129

100,.0 3.61;8520 26.75895 0.144322
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Table 11.4 The si leaky Lamb wave parameters

ka c/c ka cl/c ejP

65.0 5.709630 10.88427 7,561313 66.0 5.907279 10,67266 6.900472

67.0 6.116464 10.454041 6.191272 68.0 6.327767 1.0.246286 5.421073

69.0 6.536299 10.056432 4.554775 70.0 6.723228 9.911665 3.525174

71.0 6.797864 9.9444.58 2.161037 72.0 6.254679 11.01138 0.693661

73.0 5.758624 12.17664 0.355892 74.0 5.498012 12.95941 0.248617

75.0 5.331644 13.56695 0.194698 76.0 5.213098 14.07866 0-162056

77.0 5.122361 14.53213 0.140130 78.0 5.049325' 14.94761 0,124354

79.0 4.988286 15.33710 0.112390 80.0 4,935832 15.70801 0.102943

Q1 A A QQO'7A,7 14 C4 C Q A c)I 13Afi. l C)IA A CA(?'bn( 11 A~l'A. Q.QO7nZQCA)U ... i "-•.X_. lyt,ý rS l a " . lu %jw.X.J••j'•-•v "j X~. V. U -o- u,- It)i ý 1., 01 i QI V•. •I I. % ,,( V.I•.q-qL.

83.0 4.811332 16.75094 8.30929d-02 84.0 4.777253 17.08333 7.8136e-02

85.0 4.745802 17.41056 7.361376x=02 86.0 4,716574 17,73357 696259e-02

87.0 /.689251 18.0;5307 6.58708e-02 88.0 4.663565 18.36968 6.23563e-02

89.0 4.639316 18.68386 5.90374e-02 90.0 I 616330 18,99601 5.58780e-02

91.0 4.594466 19.30643 5.2849ge-02 92.0 4.573600 19.61545 4.99315e-02

93.0 4.553627 19.92328 4.71072e-02 94.0 4.5'-459 20.23015 4.43636e-02

95.0 4.516011 20.53626 4.16917e-02 96.0 4,498212 20.84181 3.90837e-02

97.0 4.481091 21.14695 3.65346e-02 98.0 4.404319 21.45184 3.40403e-02

99.0 4.448117 21.75661 3.15994e-02 100.0 4.432345 22.06142 2.921!0e-02
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Table 11.5 The S2 leaky Lamb wave parameters

ka Cl/C CXl Pi ka Cj/c

83.0 87.25604 0.451224 4.12350e-02 84.0 43.13697 1.447286 9.23560e-02

85.0 31.51721 2.196939 0.114933 86.0 25.57552 2.862591 0.128295

87.0 21.84771 3.482111 0.137002 88.0 19.25171 4.071021 0.142974

89.0 17.32399 4.637385 0.147201 90.0 15.82827 5.186030 0.150257

91.0 14.62990 5.7201.40 0.152495 92.0 13.64587 6.241966 0.154148

9310 12.82195 6.753189 0.155372 94,0 12.12103 7.255115 0,156276

95.0 11.51684 7.748792 0.156940 96.0 10.99016 8.235086 0.157418

97.3 10.526631 8.714724 0.157755 98.0 10.115261 9.188332 0.157981

99.0 9.747499 9.656452 0.158121 100.0 9.416545 10.119606 0.157979
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